Answer:
12 cm and 24 cm
Step-by-step explanation:
The line is divided in the ratio 2 : 4 = 2x : 4x ( x is a multiplier )
The sum is therefore
2x + 4x = 36
6x = 36 ( divide both sides by 6 )
x = 6
Thus
GP = 2x = 2 × 6 = 12 cm
PR = 4x = 4 × 6 = 24 cm
Answer:
Therefore all numbers that end with five and are greater than five are composite numbers. The prime numbers between 2 and 100 are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 and 97.
Step-by-step explanation:
Answer:
1,728 inches cubed
Step-by-step explanation:
12 * 16 * 9 = 1,728 inches cubed
Formula for volume: LxWxH
Answer:
a) ![A=\left[\begin{array}{ccc}1&2&3\\1&-1&1\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%263%5C%5C1%26-1%261%5Cend%7Barray%7D%5Cright%5D)
![b=\left[\begin{array}{ccc}0\\1\end{array}\right]](https://tex.z-dn.net/?f=b%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%5C%5C1%5Cend%7Barray%7D%5Cright%5D)
b) 
c) ![A=\left[\begin{array}{ccc}0&6\sqrt{2} &0\\\sqrt{3} &3\sqrt{3} &0\\2&-16&0\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%266%5Csqrt%7B2%7D%20%260%5C%5C%5Csqrt%7B3%7D%20%263%5Csqrt%7B3%7D%20%260%5C%5C2%26-16%260%5Cend%7Barray%7D%5Cright%5D)
![x=\left[\begin{array}{ccc}x_{1} \\x_{2} \\x_{3} \end{array}\right]](https://tex.z-dn.net/?f=x%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx_%7B1%7D%20%5C%5Cx_%7B2%7D%20%5C%5Cx_%7B3%7D%20%5Cend%7Barray%7D%5Cright%5D)
![b=\left[\begin{array}{ccc}-\sqrt{2} \\\sqrt{3} \\6\end{array}\right]](https://tex.z-dn.net/?f=b%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-%5Csqrt%7B2%7D%20%5C%5C%5Csqrt%7B3%7D%20%5C%5C6%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
a) considering the equation:
Minimize 
(matrix A)
vector b
![b=\left[\begin{array}{ccc}0\\1\end{array}\right]](https://tex.z-dn.net/?f=b%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%5C%5C1%5Cend%7Barray%7D%5Cright%5D)
b) If Pxn is matrix B and p-vector d, we have:
minimize 
![Ax=\left[\begin{array}{ccc}0&-6&0\\-4&3&0\\1&8&0\end{array}\right]](https://tex.z-dn.net/?f=Ax%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%26-6%260%5C%5C-4%263%260%5C%5C1%268%260%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{ccc}x_{1} \\x_{2} \\x_{3} \end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx_%7B1%7D%20%5C%5Cx_%7B2%7D%20%5C%5Cx_%7B3%7D%20%5Cend%7Barray%7D%5Cright%5D)
![b=\left[\begin{array}{ccc}-4\\1\\3\end{array}\right]](https://tex.z-dn.net/?f=b%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-4%5C%5C1%5C%5C3%5Cend%7Barray%7D%5Cright%5D)
![Ax-b=\left[\begin{array}{ccc}-bx_{2}+4 \\-4x_{1}+3x_{2}-1 \\x_{1}+8x_{2}-3 \end{array}\right] =1](https://tex.z-dn.net/?f=Ax-b%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-bx_%7B2%7D%2B4%20%5C%5C-4x_%7B1%7D%2B3x_%7B2%7D-1%20%20%5C%5Cx_%7B1%7D%2B8x_%7B2%7D-3%20%20%5Cend%7Barray%7D%5Cright%5D%20%3D1)

c) minimize 
in matrix:
![A=\left[\begin{array}{ccc}0&6\sqrt{2} &0\\\sqrt{3} &3\sqrt{3} &0\\2&-16&0\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%266%5Csqrt%7B2%7D%20%260%5C%5C%5Csqrt%7B3%7D%20%263%5Csqrt%7B3%7D%20%260%5C%5C2%26-16%260%5Cend%7Barray%7D%5Cright%5D)
![x=\left[\begin{array}{ccc}x_{1} \\x_{2} \\x_{3} \end{array}\right]](https://tex.z-dn.net/?f=x%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx_%7B1%7D%20%5C%5Cx_%7B2%7D%20%5C%5Cx_%7B3%7D%20%5Cend%7Barray%7D%5Cright%5D)
![b=\left[\begin{array}{ccc}-\sqrt{2} \\\sqrt{3} \\6\end{array}\right]](https://tex.z-dn.net/?f=b%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-%5Csqrt%7B2%7D%20%5C%5C%5Csqrt%7B3%7D%20%5C%5C6%5Cend%7Barray%7D%5Cright%5D)