The answer is to this question is True.
Answer:
Impending.
Explanation:
Like you would say.. "impending doom". They're synonyms.
Answer:
X is the concentration of the substance being measured and Y is the response from the instrument that is being used to measure
Explanation:
A calibration curve is the plot of known concentration of substances where x is the increasing known concentration and Y is the response, typically "absorption" taken from the instrument that is used for measuring. This curve is then used to find out the concentration of the unknown substance by using it's absorbance and comparing it with the calibration curve. For example:
Concentrations and absorbance readings are as follows
0.5mg/mL=10 nm
1.0mg/mL=15nm
1.5mg/mL=20nm
2.0mg/mL=25nm
This data is plotted on a calibration curve. Next we measure the unknown substance the absorption is 20nm. We can suggest that the concentration is 1.5 mg/mL. If there are readings that fall inbetwen values then the formulat to calculate the right concentration would be y = mx + b, where m is the slope and b is the y-intercept.
Linear regression uses the modification of the slope formula y= a + bx to best see how the data of the water samples would fit on the slope of the calibration curve. X is the independent variable , b is the slope of the line and a is the y-intercept.
Extrapolation would be the action of calculating data that are outside the calibration curve, assuming the trend would continue.
Along with neuropsychological assessment, brain imaging and recording techniques may be used to shed light on relationships between brain function and underlying abnormalities.
Brain imaging is technique used to image the structure (tumor or injury) and function (metabolic diseases and lesions) of the central nervous system.
Answer:
Glucose is co-transported with Na , which moves down its concentration gradient into the cell.
Explanation:
Na/K pump is a pump located on the plasma membrane which uses ATP to move 3 Na ions out the cell and brings in 2 K ions into the cell. It is an example of primary active transport. As a consequence,concentration of Na is higher outside the cell, while K concentration is higher inside the cell.
Glucose is transported in the cell against its gradient, together with Na ions (symport) which move down their concentration gradient.
This is an example of secondary active transport because it uses the energy from the primary active transport to move other substances such as glucose against their own gradients.