Answer:
- t = 1.5; it takes 1.5 seconds to reach the maximum height and 3 seconds to fall back to the ground.
Explanation:
<u>1) Explanation of the model:</u>
- Given: h(t) = -16t² + 48t
- This is a quadratic function, so the height is modeled by a patabola.
- This means that it has a vertex which is the minimum or maximu, height. Since the coefficient of the leading (quadratic) term is negative, the parabola opens downward and the vertex is the maximum height of the soccer ball.
<u>2) Axis of symmetry:</u>
- The axis of symmetry of a parabola is the vertical line that passes through the vertex.
- In the general form of the parabola, ax² + bx + c, the axis of symmetry is given by x = -b/(2a)
- In our model a = - 16, and b = 48, so you get: t = - ( 48) / ( 2 × (-16) ) = 1.5
<u>Conclusion</u>: since t = 1.5 is the axys of symmetry, it means that at t = 1.5 the ball reachs its maximum height and that it will take the same additional time to fall back to the ground, whic is a tolal of 1. 5 s + 1.5 s = 3.0 s.
Answer: t = 1.5; it takes 1.5 seconds to reach the maximum height and 3 seconds to fall back to the ground.
After plotting the data from the table, with the number of times sick per year as a function of the number of apples eaten per week, I can conclude that there is no definite correlation between the two variables. This is because the data points do not have a good fit with any trend, meaning the R-squared value is low. Thus, the number of apples eaten per week has no significant effect on the number of times the people listed get sick per year.
Answer:

Step-by-step explanation:
The point-slope form of an equation of a line:

<em>m</em><em> - slope</em>
<em>(x₁, y₁)</em><em> - point on a line</em>
<em />
We have

Substitute:
