Answer:
Minimum 8 at x=0, Maximum value: 24 at x=4
Step-by-step explanation:
Retrieving data from the original question:
![f(x)=x^{2}+8\:over\:[-1,4]](https://tex.z-dn.net/?f=f%28x%29%3Dx%5E%7B2%7D%2B8%5C%3Aover%5C%3A%5B-1%2C4%5D)
1) Calculating the first derivative

2) Now, let's work to find the critical points
Set this
0, belongs to the interval. Plug it in the original function

3) Making a table x, f(x) then compare
x| f(x)
-1 | f(-1)=9
0 | f(0)=8 Minimum
4 | f(4)=24 Maximum
4) The absolute maximum value is 24 at x=4 and the absolute minimum value is 8 at x=0.
As you can see, angle 5 and angle 6 are supplementary. And angle 5 and angle 3 are congruent because they are alternate interior angles.
So it will be
x+2 = 180- x+3
move x over from the right to the left
2x+2 = 183
move 2 over from the left to the right
2x = 181
divide by 2
x= 90.5
and angle 3 and angle 1 are vertical angles so they are congruent. Using the angle 3 formula to solve for the answer:
90.5+3 =93.5
When angles are congruent, their measures are congruent, therefore, measure of angle 1 is 93.5
Hmm idk hard one jnmmdmkrkror
Answer: a) Yes, there is enough fance
b) 58.1° and 47.9°
c) The city will not approve, because 1/3 of the area is just 2220.5ft²
Step-by-step explanation:
a) using law of cosines: x is the side we do not know.
x² = 126² + 110² - 2.126.110.cos74°
x² = 20335.3
x = 142.6 ft
So 150 > 142.6, there is enough fance
b) using law of sine:
sin 74/ 142.6 = sinα/126 = sinβ/110
sin 74/ 142.6 = sinα/126
0.006741 = sinα/126
sinα = 0.849
α = sin⁻¹(0.849)
α = 58.1°
sin 74/ 142.6 = sinβ/110
sin 74/ 142.6 = sinβ/110
0.006741 = sinβ/110
sinβ = 0.741
β = sin⁻¹(0.741)
β = 47.9°
Checking: 74+58.1+47.9 = 180° ok
c) Using Heron A² = p(p-a)(p-b)(p-c)
p = a+b+c/2
p=126+110+142.6/2
p=189.3
A² = 189.3(189.3-126)(189.3-110)(189.3-142.6)
A = 6661.5 ft²
1/3 A = 2220.5
So 2300 > 2220.5. The area you want to build is bigger than the area available.
The city will not approve