First of all you subtract the 2.17 dollars:
41.25-2.17=39.08
Since the other 4 people got the same meal they all have to pay the same amount so you just divide 39.08 by 4:
39.08:4=9.77
We know that:

There is also an interesting property that relates the sine and the cosine of an angle:

We can find the cosine of theta using this equation:
![\begin{gathered} \cos ^2(\theta_1)=1-\sin ^2(\theta_1) \\ \cos (\theta_1)=\sqrt{1-\sin^2(\theta_1)} \\ \cos (\theta_1)=\sqrt[]{1-(-\frac{12}{13})^2} \\ \lvert\cos (\theta_1)\rvert=\sqrt[]{1-\frac{144}{169}}=\sqrt[]{\frac{25}{169}} \\ \lvert\cos (\theta_1)\rvert=\frac{5}{13} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Ccos%20%5E2%28%5Ctheta_1%29%3D1-%5Csin%20%5E2%28%5Ctheta_1%29%20%5C%5C%20%5Ccos%20%28%5Ctheta_1%29%3D%5Csqrt%7B1-%5Csin%5E2%28%5Ctheta_1%29%7D%20%5C%5C%20%5Ccos%20%28%5Ctheta_1%29%3D%5Csqrt%5B%5D%7B1-%28-%5Cfrac%7B12%7D%7B13%7D%29%5E2%7D%20%5C%5C%20%5Clvert%5Ccos%20%28%5Ctheta_1%29%5Crvert%3D%5Csqrt%5B%5D%7B1-%5Cfrac%7B144%7D%7B169%7D%7D%3D%5Csqrt%5B%5D%7B%5Cfrac%7B25%7D%7B169%7D%7D%20%5C%5C%20%5Clvert%5Ccos%20%28%5Ctheta_1%29%5Crvert%3D%5Cfrac%7B5%7D%7B13%7D%20%5Cend%7Bgathered%7D)
Since theta is in the third quadrant then its cosine must be a negative number so:
Answer:
3x - 14 < 3x - 15
-14 < -15
never true
Step-by-step explanation:
Answer:

Step-by-step explanation:
Given two expressions ,
And , we need to find the LCM , that is lowest common factor . So , let's factorise them seperately .
<u>Factorising</u><u> </u><u>x²</u><u> </u><u>-</u><u> </u><u>9</u><u> </u><u>:</u><u>-</u><u> </u>
<u>Factorising</u><u> </u><u>3x</u><u>³</u><u> </u><u>+</u><u> </u><u>8</u><u>1</u><u> </u>
Hence we can see that (x+3) is common factor in both expressions.
<u>Hence</u><u> </u><u>the</u><u> </u><u>LCM</u><u> </u><u>is</u><u> </u><u>(</u><u> </u><u>x</u><u>+</u><u>3</u><u> </u><u>)</u><u> </u><u>.</u>