1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
oee [108]
4 years ago
5

How do u find the area?

Mathematics
2 answers:
nydimaria [60]4 years ago
7 0
Act like it's a rectangle. The height is 10 because 7+3=10 and the length it 27. Multiply them for the are and you get 270 in. Then multiply 6x7=42 because that's the are of the space that is missing from the imaginary rectangle. Multiply by 2 (84 in.) because there are 2 missing spaces and subtract from 270= 186 inches is your answer.
yan [13]4 years ago
3 0
To find the area of any non-regular shaped figure; you cut it in half where you would see normal shapes. Now that you have two separate shapes, two rectangles, one long and one normal, you find the area. 7 inches is the "width" of the normal rectangle, and 15 inches is the "length". Multiply those to find the area. That would be 105. For the next rectangle, you want to multiply 27, the length, and 3 for the width. This would be 81. 105+81=186. The area of this figure is 186.
You might be interested in
Help plsssss!!!!!!!!!!!!!
lapo4ka [179]

Answer:

Percent, Part, whole, I am not sure the rest hope this helped though

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Se encontro que la arista de un cubo es de 30cm, con un posible error en la medicion de 0.1. Utilice diferenciales para estimar
Ierofanga [76]

Answer:

a) El error máximo posible es 270 centímetros cúbicos. El error relativo asociado al volumen es 0.01. El error asociado al volumen es 1 por ciento.

b) El máximo error posible del área superficial es 36 centímetros cuadrados. El máximo error posible del área superficial es 36 centímetros cuadrados. El porcentaje de error del área superficial es 0.667 por ciento.

Step-by-step explanation:

Recordemos que el volumen y el área superficial de un cubo quedan representados por las respectivas fórmulas:

V = l^{3} (Ec. 1)

A_{s} = 6\cdot l^{2} (Ec. 2)

Donde:

l - Longitud de la arista, medida en centímetros.

A_{s} - Área superficial, medida en centrímetros cuadrados.

V - Volumen, medido en centímetros cúbicos.

a) El error máximo posible del volumen del cubo se estima por el siguiente diferencial:

\Delta V = \frac{\partial V}{\partial l}\cdot \Delta l (Ec. 3)

Donde:

\Delta V - Error máximo posible del volumen, medido en centímetros cúbicos.

\frac{\partial V}{\partial l} - Primera derivada parcial del volumen con respecto a la longitud de la arista, medida en centrímetros cuadrados.

\Delta l - Error máximo de medición, medido en centímetros.

La derivada parcial de la función de volumen es:

\frac{\partial V}{\partial l} = 3\cdot l^{2} (Ec. 4)

Ahora expandimos (Ec. 3):

\Delta V = 3\cdot l^{2}\cdot \Delta l

Si conocemos que l = 30\,cm y \Delta l = 0.1\,cm, el máximo error posible del volumen es:

\Delta V = 3\cdot (30\,cm)^{2}\cdot (0.1\,cm)

\Delta V = 270\,cm^{3}

El error máximo posible del volumen es 270 centímetros cúbicos.

Obtenemos el error relativo al dividir el resultado anterior por el volumen, es decir:

\epsilon_{V} = \frac{\Delta V}{V} (Ec. 5)

El volumen del cubo es: (l = 30\,cm)

V = (30\,cm)^{3}

V = 27000\,cm^{3}

Ahora sustituimos (Ec. 5):

\epsilon_{V} = \frac{270\,cm^{3}}{27000\,cm^{3}}

\epsilon_{V} = 0.01

El error relativo asociado al volumen es 0.01.

Por último, encontramos el porcentaje de error asociado al volumen:

\%\epsilon_{V} = 0.01\times 100\,\%

\%\epsilon_{V} = 1\,\%

El error asociado al volumen es 1 por ciento.

b) El error máximo posible del área superficial del cubo se estima por el siguiente diferencial:

\Delta A_{s} = \frac{\partial A_{s}}{\partial l}\cdot \Delta l (Ec. 6)

Donde:

\Delta A_{s} - Error máximo posible del área superficial, medido en centímetros cuadrados.

\frac{\partial A_{s}}{\partial l} - Primera derivada parcial del área superficial con respecto a la longitud de la arista, medida en centrímetros.

\Delta l - Error máximo de medición, medido en centímetros.

La derivada parcial de la función de área superficial es:

\frac{\partial A_{s}}{\partial l} = 12\cdot l (Ec. 7)

Ahora expandimos (Ec. 6):

\Delta A_{s} = 12\cdot l\cdot \Delta l

Si conocemos que l = 30\,cm y \Delta l = 0.1\,cm, el máximo error posible del área superficial es:

\Delta A_{S} = 12\cdot (30\,cm)\cdot (0.1\,cm)

\Delta A_{S} = 36\,cm^{2}

El máximo error posible del área superficial es 36 centímetros cuadrados.

Obtenemos el error relativo al dividir el resultado anterior por el volumen, es decir:

\epsilon_{A_{S}} = \frac{\Delta A_{S}}{A_{S}} (Ec. 8)

El área superficial del cubo es: (l = 30\,cm)

A_{S} = 6\cdot (30\,cm)^{2}

A_{S} = 5400\,cm^{2}

Ahora sustituimos (Ec. 8):

\epsilon_{A_{S}} = \frac{36\,cm^{2}}{5400\,cm^{2}}

\epsilon_{A_{S}} = 6.667\times 10^{-3}

El error relativo del área superficial es 6.667 × 10⁻³.

Por último, encontramos el porcentaje de error asociado al área superficial:

\%\epsilon_{A_{S}} = 6.667\times 10^{-3}\times 100\,\%

\%\epsilon_{A_{S}} = 0.667\,\%

El porcentaje de error del área superficial es 0.667 por ciento.

6 0
3 years ago
Can I get some help please?
mamaluj [8]

Answer:

1)   68

    / \

 4     17

  /\

2  2

68=2*2*17

2)  104

   /      \

 4      26

  /\       /\

2  2   2   13

104=2*2*2*13

3) 78

    /\

 2    39

        /\

      3   13

78=2*3*13

4) 225

    /\

  9   25

  /\    /\

 3 3  5 5

225=3*3*5*5

Second Part:

1)  45

    /\

  3  15

       /\

      3 5

45=3*3*5

2)  70

     /\

   2   35

          /\

        5  7

70=2*5*7

3)  54

     /\

   9   6

   /\    /\

  3 3  2 3

54=3*3*2*3

4)  126

      /\

    3   42

          /\

         3  14

               /\

              7  2

126=3*3*7*2

3 0
3 years ago
The measure of a side of a square is x units. A new square is formed with each side 6 units longer than the original squares sid
aliya0001 [1]
To answer this, you will represent the new side length of the square as x + 6.

To find the area you will multiply (x + 6) by (x + 6).

To do this, you will multiply x and x, x by 6 twice and 6 by 6.

See the attached picture for the expression representing the area of the new square.

5 0
4 years ago
1. (Sec. 6.1) In a random sample of 80 components of a certain type, 12 are found to be defective. (a) Give a point estimate for
denis-greek [22]

Answer:

(a) 0.85

(b) 0.7225

Step-by-step explanation:

(a) The point estimate for the proportion of all such components that are not defective is given by the number of non-defective units in the sample divided by the sample size:

p=\frac{80-12}{80}\\p=0.85

The proportion is 0.85.

(b) Assuming that the sample is large enough to accurately provide a point estimate for the whole population, this can be treated as a binomial model with probability of success (non-defective part) p = 0.85. Since both components must be non-defective for the system to work, the probability of two successes in two trials is:

P(x=2) = 0.85^2\\P(x=2) = 0.7225

An estimate of 0.7225 for the proportion of all such systems that will function properly.

4 0
3 years ago
Other questions:
  • The monthly cost (in dollars) of a long-distance phone plan is a linear function of the total calling time (in minutes). The mon
    14·1 answer
  • Mike wants to buy a new Dodge Charger. He is able to negotiate a price of $21,500 for the
    11·1 answer
  • An amount of $36,000 is borrowed for 6 years at 4.75% interest, compounded annually. if the loan is paid in full at the end of t
    11·1 answer
  • I need someone to help me find the missing value please.
    9·1 answer
  • Find the volume. 10 2/3 in , 3 in , and 6 3/8
    12·1 answer
  • X-8/2 + 1/3 =7 what is x?
    10·1 answer
  • Y’all should help on this ASAP
    11·1 answer
  • The equation 0.5x - y = 2 is expressed in the standard form for a linear equation.
    9·1 answer
  • I need help..........​
    11·1 answer
  • I need to know the answer rn
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!