Answer:
- cos(A) = 3/5
- cos(B) = 0
- cos(C) = 4/5
Step-by-step explanation:
The mnemonic SOH CAH TOA reminds you of the relation between the cosine of an angle and the sides of the triangle.
Cos = Adjacent/Hypotenuse
__
<h3>Angle A</h3>
In the given triangle, the hypotenuse is AC. The side adjacent to angle A is AB, so its cosine is ...
cos(A) = AB/AC
cos(A) = 3/5
__
<h3>Angle B</h3>
The right angle in the triangle is angle B. The cosine of a right angle is 0.
cos(B) = 0
__
<h3>Angle C</h3>
The side adjacent to angle C is CB, so its cosine is ...
cos(C) = CB/AC
cos(C) = 4/5
Answer:
Step-by-step explanation:
1 2/3 (5 2/7)
Answer:
f(3π/4) = -π
A = π
b = 2
Step-by-step explanation:
Given that the function follows the form: f(x) = A sin(bx), then f(0) = 0. Given that the period is π, then at x = π/4 the function reaches a maimum, at x = π/2, f(x) = 0, and at x = 3π/4, f(x) reaches a minimum, which have to be π*(-1) = -π
Given the general equation: f(x) = A sin(bx), its period is calculated as:
period = 2π/b
which is equal to π, then:
2π/b = π
b = 2
Replacing x = π/4 into the equation of the function, we get:
A sin(2(π/4)) = π
A sin(π/2) = π
A = π
No the answer is -13. Please mark me brainliest!