1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
serious [3.7K]
2 years ago
6

How would you write 0.00000.79512 in scientific notation

Mathematics
1 answer:
Ne4ueva [31]2 years ago
3 0
79,512 x 10^-5.......

You might be interested in
R, S, Q and P are the midpoints of OC, CB, BA and OA respectively.
Stolb23 [73]

Answer:

See below.

Step-by-step explanation:

Draw segment OB.

In triangle OBC, points R and S are the midpoints of sides OC and BC, respectively. That makes RS parallel to OB.

In triangle OBA, points P and Q are the midpoints of sides OA and BA, respectively. That makes PQ parallel to OB.

Since segments RS and PQ are parallel to segment OB, then RS and PQ are parallel to each other.

3 0
2 years ago
Teesha is in French club. There are 10 freshman, 12 sophomores, 15 juniors, and 30 seniors in the club. The advisor is going to
FrozenT [24]
We know that

In French club <span>there are
10 freshman
</span><span>12 sophomores
15 juniors
30 seniors

total of the members------> (10+12+15+30)=67
total </span> freshman-----> 10

so
<span>the probability that a freshman will be chosen=10/67
and 
</span><span>the probability that a freshman will not be chosen=(67-10)/67
</span>the probability that a freshman will not be chosen=57/67---> 0.8507
0.8507= 85.07%

the answer is
the probability that a freshman will not be chosen is 85.07%
6 0
3 years ago
Last year , there were 30 male members and 20 female members in a Chess Club . This year , the number of male members is decreas
LekaFEV [45]

The r% of a quantity x is computed by dividing x in 100 parts, and considering r of such parts. So, the r% of the male is

30\times\cfrac{r}{100} = 0.3 r

and similarly, the r% of female is

20\times\cfrac{r}{100} = 0.2 r

The number of males decreased by this quantity, so now it is

30 - 0.3r

and the number of female increased by this quantity, so now it is

20+0.2r

we know that these two new counts are the same number, so we can build and solve the equality

30 - 0.3r = 20+0.2r

Subtract 20 and add 0.3r from both sides:

10 = 0.5r

Divide both sides by 0.5 to solve for r:

r = 20

Let's check the answer

The 20% of 30 is 30 \times \frac{20}{100} = 6, while the 20% of 20 is 4. So, we are stating that 30-6 = 20+4 which is true because both expressions evaluate to 24.

7 0
3 years ago
Tell whether the angles are complementary or supplementary. Then find the value of x.
Genrish500 [490]

Answer:

x = 33

Step-by-step explanation:

Two angles are complementary as the sum of two angles is 90

x + 24 + x = 90        {Combine like terms}

  2x + 24 = 90      {Subtract 24 from both sides}

          2x  = 90 - 24

         2x   = 66

          x   = 66/2

         x = 33

7 0
2 years ago
The curve
kherson [118]

Answer:

Point N(4, 1)

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality<u> </u>

<u>Algebra I</u>

  • Coordinates (x, y)
  • Functions
  • Function Notation
  • Terms/Coefficients
  • Anything to the 0th power is 1
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle y = \sqrt{x - 3}<u />

<u />\displaystyle y' = \frac{1}{2}<u />

<u />

<u>Step 2: Differentiate</u>

  1. [Function] Rewrite [Exponential Rule - Root Rewrite]:                                   \displaystyle y = (x - 3)^{\frac{1}{2}}
  2. Chain Rule:                                                                                                        \displaystyle y' = \frac{d}{dx}[(x - 3)^{\frac{1}{2}}] \cdot \frac{d}{dx}[x - 3]
  3. Basic Power Rule:                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{\frac{1}{2} - 1} \cdot (1 \cdot x^{1 - 1} - 0)
  4. Simplify:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}} \cdot 1
  5. Multiply:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}}
  6. [Derivative] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle y' = \frac{1}{2(x - 3)^{\frac{1}{2}}}
  7. [Derivative] Rewrite [Exponential Rule - Root Rewrite]:                                 \displaystyle y' = \frac{1}{2\sqrt{x - 3}}

<u>Step 3: Solve</u>

<em>Find coordinates</em>

<em />

<em>x-coordinate</em>

  1. Substitute in <em>y'</em> [Derivative]:                                                                             \displaystyle \frac{1}{2} = \frac{1}{2\sqrt{x - 3}}
  2. [Multiplication Property of Equality] Multiply 2 on both sides:                      \displaystyle 1 = \frac{1}{\sqrt{x - 3}}
  3. [Multiplication Property of Equality] Multiply √(x - 3) on both sides:            \displaystyle \sqrt{x - 3} = 1
  4. [Equality Property] Square both sides:                                                           \displaystyle x - 3 = 1
  5. [Addition Property of Equality] Add 3 on both sides:                                    \displaystyle x = 4

<em>y-coordinate</em>

  1. Substitute in <em>x</em> [Function]:                                                                                \displaystyle y = \sqrt{4 - 3}
  2. [√Radical] Subtract:                                                                                          \displaystyle y = \sqrt{1}
  3. [√Radical] Evaluate:                                                                                         \displaystyle y = 1

∴ Coordinates of Point N is (4, 1).

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

4 0
2 years ago
Other questions:
  • Describe how to round 3.987 to the nearest 10th
    15·1 answer
  • The mean GPA for 112 residents of the local apartment complex is 1.7. What is the best point estimate for the mean GPA for all r
    13·1 answer
  • A map is drawn to a scale of 1 inch = 10 miles. How many miles apart are two points that are 2 1/2 inches apart on the map?
    7·2 answers
  • If the graph of f(x) = 4* is shifted 7 units to the left, then what would be the equation of the new graph?
    14·1 answer
  • Find the value of x in the equation below. 60 = 10 x​
    11·2 answers
  • 2 divided by 11 times 9 minus 3 squared
    15·1 answer
  • The area of a poster board is x2+3x-10 square inches. Find the dimensions of the poster board if x=14
    8·1 answer
  • 2. Evaluate the polynomial two ways: by substituting in the given
    5·2 answers
  • A square of side 6cm has the same area as a rectanglevof length 9cm. Find the breadth of the rectangle​
    12·2 answers
  • Helppppp please 100 points and ill give brainliest!!!
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!