Answer:
7-(3x)=11
Step-by-step explanation:
Usual limit of sin is sinX/X--->1, when X--->0
sin3x/5x^3-4x=0/0?, sin3x/3x--->1 when x --->0, so sin3x/5x^3-4x= [3x. sin3x / 3x] /(5x^3-4x)=(sin3x / 3x) . (3x/5x^3-4x)
=(sin3x / 3x) . (3/5x^2- 4)
finally lim sin3x/5x^3-4x=lim (sin3x / 3x) .(3/5x^2- 4)=1x(3/-4)= - 3/4
x----->0 x---->0
23° sería te sirve dime qué si ☜ (↼_↼)
This is the the concept of trigonometry, to get the sine value of the the function given we shall proceed as follows;
Using Pythagorean theorem, the hypotenuse of the triangle will be found as follows;
The side length will be 8 units since the y-coordinate is -8
The side width will be 3 units since the x- coordinate is 3
c^2=a^2+b^2
c^2=(3)^2+(-8)^2
c^2=9+64
c^2=73
c=sqrt(73)
Therefore the sine value will be:
sin x=3/sqrt(73)
multiply both numerator and denominator by sqrt(73) we get:
sin x=(3√73)/73
Therefore the answer is A]
4w-7k=28
-7k+4w+-4w=28+-4w
-7k=-4w+28
-7k/-7=-4w+28/-7
k=4/7w-4
:)