What statements??? There is nothing there
Answer:
In mendelian inheritance, the alleles for a gene show normal dominant-recessive relationship. Chromosomes also show crossover due to which new random combination of traits is possible in the offspring. This crossover takes place between homologous chromosomes during meiosis I.
Organellar DNA like the ones present in mitochondria and chloroplast do not follow mendelian inheritance because unlike nuclear chromosomes they do not have cross over events. There is no orderly segregation of alleles during meiosis. Traits controlled by them are usually inherited as it is and usually it is from the maternal parent because paternal gamete like sperm does not contain mitochondria.
Answer:
A dorsal root (sensory or afferent) and a ventral root (motor or efferent) originate from the medulla. They unite near the intervertebral foramen, forming the spinal nerve. The nerves emerge from the intervertebral foramen, dividing into ventral and dorsal ramus.
Explanation:
The nerve is a set of nerve fibers perceptible to the naked eye and wrapped in connective tissue. They are made up of roots, trunks and nerve branches (some of them come together and form plexuses).The spinal nerve originate from the spinal cord in the form of 31 pairs: 8 cervical, 12 thoracic, 5 lumbar, 5 sacral and 1 coccygeal. They emerge from the spinal cord through two roots: dorsal roots, made up of sensory fibers that come from the sensory neurons of the spinal ganglion and that penetrate the spinal cord through the posterolateral and ventral root, made up of motor fibers, coming from the motor neurons of the anterior horn and visceral of the lateral horn of the gray matter of the spinal cord. This root exits the spinal cord through the anterolateral groove, then joins the posterior root to form the spinal nerve, which exits the vertebral canal through the corresponding intervertebral foramen.Each spinal nerve, after leaving the vertebral canal, emits two primary ramus: the dorsal ramus, contains somatic and visceral fibers that go to the skin and muscles of the back and the ventral ramus, which supplies the ventrolateral surface of the skin, body wall and extremities.
Active faults are structure along which we expect displacement to occur. By definition, since a shallow earthquake is a process that produces displacement across a fault, all shallow earthquakes occur on active faults. Inactive faults are structures that we can identify, but which do no have earthquakes.