Answer:
Explanation:
Mass = 624 gm = .624 kg
weight = .624 x 9.8
= 6.11 N
Radius of ball = 12.15 x 10⁻² cm
volume of ball
= 4/3 x 3.14 x ( 12.15 x 10⁻²)³
= 7509.26 x 10⁻⁶ m³
Buoyant force = weight of displaced water
= 7509.26 x 10⁻⁶ x 10³ x 9.8
= 73.59 N
b ) Since buoyant force exceeds the weight of the ball , it will float .
c )
Let volume v sticks out while floating .
Volume under water
= 7509.26 x 10⁻⁶ - v
its weight
= (7509.26 x 10⁻⁶ - v ) x 10³ x 9.8
For floating
(7509.26 x 10⁻⁶ - v ) x 10³ x 9.8 = .624 x 9.8 ( weight of ball )
(7509.26 x 10⁻⁶ - v ) x 10³ = .624
7.509 - v x 10³ = .624
v x 10³ = 7.509 - .624
v x 10³ = 6.885
v = 6.885 x 10⁻³ m³
fraction
= v / total volume
= 6.885 x 10⁻³ / 7.51 x 10⁻³
91.67 %
<span>15 m/s^2
The first thing to calculate is the difference between the final and initial velocities. So
180 m/s - 120 m/s = 60 m/s
So the plane changed velocity by a total of 60 m/s. Now divide that change in velocity by the amount of time taken to cause that change in velocity, giving
60 m/s / 4.0 s = 15.0 m/s^2
Since you only have 2 significaant figures, round the result to 2 significant figures giving 15 m/s^2</span>
A. Home birth
Hope this helps :)
Answer:
0.0816 kgm/s
Explanation:
From the question,
Momentum of the pellet just before it hits the modelling clay is = (mass of the pellet+ mass of the truck clay)×initial velocity of pellet.
P =(M+m)u...................... Equation 1
Where P = initial momentum of the pellet, m = mass of the pellet, u = initial speed of the pillet, M = mass of the truck
Given: m = 2 g = 2/1000 kg = 0.002 kg, u = 0.8 m/s, M = 0.1 kg
Substitute these values into equation 1
P = (0.002+0.1)0.8
P = (0.102)0.8
P = 0.0816 kgm/s
You need distance and time to find average speed.