Answer:
The correct answer is option C (voltage gated Na+ channels).
Explanation:
Output region or axon terminal is the structure of neuron which transmits the signals to other nerve cells.
The signal is transferred via action potential generated by the dendrite cell which moves along the axon and reaches the synaptic junction.
At the synaptic junction, voltage-gated channel (Na+) channels located in the membrane of the axon terminal cell opens due to the changes in the electric membrane potential which play important role in returning the depolarized cell to a resting state.
Thus, option C (voltage-gated Na+ channels) is the correct answer.
The answer is B- Embryological Development.
Answer:
please mark as brainliest answer as it will also give you 3 points
Explanation:
Cyclin-dependent kinases (CDKs) are the families of protein kinases first discovered for their role in regulating the cell cycle. They are also involved in regulating transcription, mRNA processing, and the differentiation of nerve cells.[1] They are present in all known eukaryotes, and their regulatory function in the cell cycle has been evolutionarily conserved. In fact, yeast cells can proliferate normally when their CDK gene has been replaced with the homologous human gene.[1][2] CDKs are relatively small proteins, with molecular weights ranging from 34 to 40 kDa, and contain little more than the kinase domain.[1] By definition, a CDK binds a regulatory protein called a cyclin. Without cyclin, CDK has little kinase activity; only the cyclin-CDK complex is an active kinase but its activity can be typically further modulated by phosphorylation and other binding proteins, like p27. CDKs phosphorylate their substrates on serines and threonines, so they are serine-threonine kinases.[1] The consensus sequence for the phosphorylation site in the amino acid sequence of a CDK substrate is [S/T*]PX[K/R], where S/T* is the phosphorylated serine or threonine, P is proline, X is any amino acid, K is lysine, and R is arginine.[1]
Answer:
Nervous stimulus action for muscle contraction
Explanation:
Nerve stimulation is sent to the sarcolemma, which are motor nerves at the neuromuscular junction (junction between the terminal part of a motor axon with a motor plate), after which nerve endings implant in the sarcolemma and form plaque on the surface of muscle fibers, which in turn transmit stimulus to the musculature.
Then, an electrical current (from the stimuli) is generated, it propagates through the muscle cell membrane, reaches the cytoplasm and triggers the muscle contraction mechanism.
Answer:
Mammals undoubtedly play an important role in ecosystems by providing essential services such as seed dispersal, pollination and regulating insect populations, and reducing disease transmission [20–22] and there is some evidence that some groups act as indicators of general ecosystem health [23].
Explanation: