In a store, perhaps. People want it to be easy to shop, so it would be best for say, a top ramen package to be the same net weight as all the other top ramen packages. This makes it 1) easy to label and 2) easy to be confident buying, as it is exactly the same as all the others.
Answer:
The equation would be y = x + 5, in which x is the number of weeks and y is the number of books he has.
Step-by-step explanation:
We know this because even at 0 weeks, he still has 5 books. Therefore we put this as the constant at the end. Then we can add the number of weeks since the rate is one book per week.
1. Introduction. This paper discusses a special form of positive dependence.
Positive dependence may refer to two random variables that have
a positive covariance, but other definitions of positive dependence have
been proposed as well; see [24] for an overview. Random variables X =
(X1, . . . , Xd) are said to be associated if cov{f(X), g(X)} ≥ 0 for any
two non-decreasing functions f and g for which E|f(X)|, E|g(X)|, and
E|f(X)g(X)| all exist [13]. This notion has important applications in probability
theory and statistical physics; see, for example, [28, 29].
However, association may be difficult to verify in a specific context. The
celebrated FKG theorem, formulated by Fortuin, Kasteleyn, and Ginibre in
[14], introduces an alternative notion and establishes that X are associated if
∗
SF was supported in part by an NSERC Discovery Research Grant, KS by grant
#FA9550-12-1-0392 from the U.S. Air Force Office of Scientific Research (AFOSR) and
the Defense Advanced Research Projects Agency (DARPA), CU by the Austrian Science
Fund (FWF) Y 903-N35, and PZ by the European Union Seventh Framework Programme
PIOF-GA-2011-300975.
MSC 2010 subject classifications: Primary 60E15, 62H99; secondary 15B48
Keywords and phrases: Association, concentration graph, conditional Gaussian distribution,
faithfulness, graphical models, log-linear interactions, Markov property, positive
Answer:
P(4≤x≤7) = 2/3
Step-by-step explanation:
We'll begin by obtaining the sample space (S) i.e possible outcome of rolling both dice at the same time. This is illustrated below:
1,1 1,2 1,3 1,4 1,5 1,6
2,1 2,2 2,3 2,4 2,5 2,6
3,1 3,2 3,3 3,4 3,5 3,6
4,1 4,2 4,3 4,4 4,5 4,6
5,1 5,2 5,3 5,4 5,5 5,6
6,1 6,2 6,3 6,4 6,5 6,6
Adding the outcome together, the sample space (S) becomes:
2 3 4 5 6 7
3 4 5 6 7 8
4 5 6 7 8 9
5 6 7 8 9 10
6 7 8 9 10 11
7 8 9 10 11 12
Next, we shall obtain the event of 4≤x≤7. This is illustrated below:
4 5 6 7
4 5 6 7
4 5 6 7
4 5 6 7
4 5 6 7
4 5 6 7
Finally, we shall determine P(4≤x≤7). This can be obtained as follow:
Element in the sample space, n(S) = 36
Element in 4≤x≤7, n(4≤x≤7) = 24
Probability of 4≤x≤7, P(4≤x≤7) = ?
P(4≤x≤7) = n(4≤x≤7) / nS
P(4≤x≤7) = 24/36
P(4≤x≤7) = 2/3
When the remainder theorem is applied to the total number of beads, the number of beads left is 3
<h3>What is
remainder theorem?</h3>
The question is an illustration of remainder theorem. Remainder theorem is used to determine the remainder when a number divides another
The number of beads used in each design are given as:



Calculate the total number of beads used for all three designs



The number of available beads is:

Divide 750 by 83, to get the total number of designs


Remove decimal (do not approximate)

The number of beads remaining is calculated using:



Hence, there are 3 beads remaining
Read more about remainder theorem at:
brainly.com/question/13328536