Let x be the number in the problem. When it states that x is "no more than -10", it means than it is less than or equal to -10. So, we have

x≤-10
In order to cancel out the

on the left and isolate x, we multiply both sides by

(since

·

=1). Thus, we have
x≤-10·

=-15
Therefore, x≤-15
Here is our profit as a function of # of posters
p(x) =-10x² + 200x - 250
Here is our price per poster, as a function of the # of posters:
pr(x) = 20 - x
Since we want to find the optimum price and # of posters, let's plug our price function into our profit function, to find the optimum x, and then use that to find the optimum price:
p(x) = -10 (20-x)² + 200 (20 - x) - 250
p(x) = -10 (400 -40x + x²) + 4000 - 200x - 250
Take a look at our profit function. It is a normal trinomial square, with a negative sign on the squared term. This means the curve is a downward facing parabola, so our profit maximum will be the top of the curve.
By taking the derivative, we can find where p'(x) = 0 (where the slope of p(x) equals 0), to see where the top of profit function is.
p(x) = -4000 +400x -10x² + 4000 -200x -250
p'(x) = 400 - 20x -200
0 = 200 - 20x
20x = 200
x = 10
p'(x) = 0 at x=10. This is the peak of our profit function. To find the price per poster, plug x=10 into our price function:
price = 20 - x
price = 10
Now plug x=10 into our original profit function in order to find our maximum profit:
<span>p(x)= -10x^2 +200x -250
p(x) = -10 (10)</span>² +200 (10) - 250
<span>p(x) = -1000 + 2000 - 250
p(x) = 750
Correct answer is C)</span>
12, 4
take the first number together than the last ones and just find the difference
Answer:
Pov:شما به ترجمه گوگل رفت برای دیدن آنچه من گفتم و دیدم این xD
Step-by-step explanation:
Pov:شما به ترجمه گوگل رفت برای دیدن آنچه من گفتم و دیدم این xD
7 ^ 1/5 ^ 5
power to a power is multiplied
7 ^ (1/5 *5)
7^1
7
Choice A