1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lana66690 [7]
3 years ago
13

Write the first three nonzero terms in the Maclaurin seriesfor xsin(-2x).

Mathematics
1 answer:
grandymaker [24]3 years ago
4 0

Answer:

The Maclaurin of xsin\left(-2x\right) is -2x^2+\frac{4}{3}x^4-\frac{4}{15}x^6+\frac{8}{315}x^8-\frac{4}{2835}x^{10}+\ldots.

Step-by-step explanation:

Taylor series of function f\left(x\right) at <em>a</em> is defined as:

\:f\left(x\right)=f\left(a\right)+\frac{f^'\left(a\right)}{1!}\left(x-a\right)+\frac{f^{''}\left(a\right)}{2!}\left(x-a\right)^2+\frac{f^{'''}\left(a\right)}{3!}\left(x-a\right)^3+\ldots

Maclaurin series of function f\left(x\right) is a Taylor series  of function f\left(x\right) at <em>a </em>= 0

\:f\left(x\right)=f\left(0\right)+\frac{f^'\left(0\right)}{1!}\left(x\right)+\frac{f^{''}\left(0\right)}{2!}\left(x\right)^2+\frac{f^{'''}\left(0\right)}{3!}\left(x\right)^3+\ldots

Step 1: Find the derivatives of f\left(x\right)=x\sin \left(-2x\right) at <em>a </em>= 0

f^{(1)}\left(x\right)=\left(f^{(0)}\left(x\right)\right)^{\prime}=\left(- x \sin{\left(2 x \right)}\right)^{\prime}=- 2 x \cos{\left(2 x \right)} - \sin{\left(2 x \right)}

f^{(2)}\left(x\right)=\left(f^{(1)}\left(x\right)\right)^{\prime}=\left(- 2 x \cos{\left(2 x \right)} - \sin{\left(2 x \right)}\right)^{\prime}=4 x \sin{\left(2 x \right)} - 4 \cos{\left(2 x \right)}

f^{(3)}\left(x\right)=\left(f^{(2)}\left(x\right)\right)^{\prime}=\left(4 x \sin{\left(2 x \right)} - 4 \cos{\left(2 x \right)}\right)^{\prime}=8 x \cos{\left(2 x \right)} + 12 \sin{\left(2 x \right)}

f^{(4)}\left(x\right)=\left(f^{(3)}\left(x\right)\right)^{\prime}=\left(8 x \cos{\left(2 x \right)} + 12 \sin{\left(2 x \right)}\right)^{\prime}=- 16 x \sin{\left(2 x \right)} + 32 \cos{\left(2 x \right)}

f^{(5)}\left(x\right)=\left(f^{(4)}\left(x\right)\right)^{\prime}=\left(- 16 x \sin{\left(2 x \right)} + 32 \cos{\left(2 x \right)}\right)^{\prime}=- 32 x \cos{\left(2 x \right)} - 80 \sin{\left(2 x \right)}

f^{(6)}\left(x\right)=\left(f^{(5)}\left(x\right)\right)^{\prime}=\left(- 32 x \cos{\left(2 x \right)} - 80 \sin{\left(2 x \right)}\right)^{\prime}=64 x \sin{\left(2 x \right)} - 192 \cos{\left(2 x \right)}

f^{(7)}\left(x\right)=\left(f^{(6)}\left(x\right)\right)^{\prime}=\left(64 x \sin{\left(2 x \right)} - 192 \cos{\left(2 x \right)}\right)^{\prime}=128 x \cos{\left(2 x \right)} + 448 \sin{\left(2 x \right)}

f^{(8)}\left(x\right)=\left(f^{(7)}\left(x\right)\right)^{\prime}=\left(128 x \cos{\left(2 x \right)} + 448 \sin{\left(2 x \right)}\right)^{\prime}=- 256 x \sin{\left(2 x \right)} + 1024 \cos{\left(2 x \right)}

f^{(9)}\left(x\right)=\left(f^{(8)}\left(x\right)\right)^{\prime}=\left(- 256 x \sin{\left(2 x \right)} + 1024 \cos{\left(2 x \right)}\right)^{\prime}=- 512 x \cos{\left(2 x \right)} - 2304 \sin{\left(2 x \right)}

f^{(10)}\left(x\right)=\left(f^{(9)}\left(x\right)\right)^{\prime}=\left(- 512 x \cos{\left(2 x \right)} - 2304 \sin{\left(2 x \right)}\right)^{\prime}=1024 x \sin{\left(2 x \right)} - 5120 \cos{\left(2 x \right)}

Step 2: Evaluate the derivatives at the given point.

\left(f\left(0\right)\right)^{\prime }=0

\left(f\left(0\right)\right)^{\prime \prime }=-4

\left(f\left(0\right)\right)^{\prime \prime \prime }=0

\left(f\left(0\right)\right)^{\prime \prime \prime \prime }=32

\left(f\left(0\right)\right)^{\left(5\right)}=0

\left(f\left(0\right)\right)^{\left(6\right)}=-192

\left(f\left(0\right)\right)^{\left(7\right)}=0

\left(f\left(0\right)\right)^{\left(8\right)}=1024

\left(f\left(0\right)\right)^{\left(9\right)}=0

\left(f\left(0\right)\right)^{\left(10\right)}=-5120

Step 3: Use the calculated values to get a polynomial

f\left(x\right)\approx\frac{0}{0!}x^{0}+\frac{0}{1!}x^{1}+\frac{-4}{2!}x^{2}+\frac{0}{3!}x^{3}+\frac{32}{4!}x^{4}+\frac{0}{5!}x^{5}+\frac{-192}{6!}x^{6}+\frac{0}{7!}x^{7}+\frac{1024}{8!}x^{8}+\frac{0}{9!}x^{9}+\frac{-5120}{10!}x^{10}

Simplify,

f\left(x\right)\approx P\left(x\right) = -2x^{2}+\frac{4}{3}x^{4}- \frac{4}{15}x^{6}+\frac{8}{315}x^{8}- \frac{4}{2835}x^{10}

You might be interested in
Need help to find the answer
Ahat [919]

Answer:

PQ = 16

Step-by-step explanation:

PQ + QR = PR

(x + 6) + (3x) = 5x -4

4x + 6 = 5x -4

x = 10

10 + 6 = 16

8 0
3 years ago
Twins Jaelynn and Raylinn attend Audubon Middle School. They are on a student council committee that is deciding what the ticket
ivann1987 [24]

Answer:

look it up

Step-by-step explanation:

5 0
3 years ago
A functiom is graphed on the coordinate plane.<br><br>What is the value of the function when x=4?​
Elena L [17]

Answer: The answer is 2. Go open of the x line 2 then it lines up with the y.

4 0
3 years ago
Read 2 more answers
5/6 + 3j = -2/3 I need to find the value of j
weeeeeb [17]

5/6 + 3j = -2/3

Multiply all terms by 3.

5/2 = 3j - 2

Multiply all terms by 2.

5 = 6j - 4

Add 4 to both sides.

9 = 6j

Divide both sides by 6.

j = 1.5

8 0
3 years ago
Use the Distance Formula to find the distance between points 1 and 2 on the coordinate plane, rounded to the nearest tenth unit.
Shkiper50 [21]

Answer:

\sf d = 121.0

given:

  • Point 1: (0, 80)
  • Point 2: (95,5)

distance between two points formula:

\sf d = \sqrt{(x_2 - x_1)^2 + (y_2-y_1)^2}

using the formula:

\sf d = \sqrt{(95 - 0)^2 + (5-80)^2}

\sf d = \sqrt{9025 + 5625}

\sf d = \sqrt{14650}

\sf d = 5\sqrt{586}

\sf d = 121.0

4 0
2 years ago
Other questions:
  • 2.75×1.2<br><img src="https://tex.z-dn.net/?f=2.75%20%5Ctimes%201.2%20%20%5C%5C%20%20%5C%5C%20%20%5C%5C%20%20%5C%5C%20%20%5C%5C%
    11·2 answers
  • Elli’s age in 10 years will be the same as Peggy’s age is now. Five years from now, Peggy’s age will be twice Elli’s age. What a
    12·2 answers
  • Choose the best description for the real number 34 over 3 . (4 points)
    7·2 answers
  • marie hikes at a rate of 2 miles per hour if she hiked for 6 and 2/5 hours how many miles will she hike
    6·1 answer
  • Does a fraction indicate a ratio
    5·1 answer
  • Find the volume of a right circular cone that has a height of 12.7 m and a base with a circumference of 18.9 m. Round your answe
    8·1 answer
  • My new Labrador puppy weighs 3 pounds more than 0.25 of his mom's weight His mom weighs 60 pounds what is kaiser weight?
    9·2 answers
  • Two functions are given below: f(x) and h(x). State the axis of symmetry for each function and explain how to find it.
    8·1 answer
  • 2/3x+15=4<br> With explaination
    7·1 answer
  • Students in an engineering class designed model airplanes. The average distance flown was 48 feet. The table shows the differenc
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!