1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lana66690 [7]
3 years ago
13

Write the first three nonzero terms in the Maclaurin seriesfor xsin(-2x).

Mathematics
1 answer:
grandymaker [24]3 years ago
4 0

Answer:

The Maclaurin of xsin\left(-2x\right) is -2x^2+\frac{4}{3}x^4-\frac{4}{15}x^6+\frac{8}{315}x^8-\frac{4}{2835}x^{10}+\ldots.

Step-by-step explanation:

Taylor series of function f\left(x\right) at <em>a</em> is defined as:

\:f\left(x\right)=f\left(a\right)+\frac{f^'\left(a\right)}{1!}\left(x-a\right)+\frac{f^{''}\left(a\right)}{2!}\left(x-a\right)^2+\frac{f^{'''}\left(a\right)}{3!}\left(x-a\right)^3+\ldots

Maclaurin series of function f\left(x\right) is a Taylor series  of function f\left(x\right) at <em>a </em>= 0

\:f\left(x\right)=f\left(0\right)+\frac{f^'\left(0\right)}{1!}\left(x\right)+\frac{f^{''}\left(0\right)}{2!}\left(x\right)^2+\frac{f^{'''}\left(0\right)}{3!}\left(x\right)^3+\ldots

Step 1: Find the derivatives of f\left(x\right)=x\sin \left(-2x\right) at <em>a </em>= 0

f^{(1)}\left(x\right)=\left(f^{(0)}\left(x\right)\right)^{\prime}=\left(- x \sin{\left(2 x \right)}\right)^{\prime}=- 2 x \cos{\left(2 x \right)} - \sin{\left(2 x \right)}

f^{(2)}\left(x\right)=\left(f^{(1)}\left(x\right)\right)^{\prime}=\left(- 2 x \cos{\left(2 x \right)} - \sin{\left(2 x \right)}\right)^{\prime}=4 x \sin{\left(2 x \right)} - 4 \cos{\left(2 x \right)}

f^{(3)}\left(x\right)=\left(f^{(2)}\left(x\right)\right)^{\prime}=\left(4 x \sin{\left(2 x \right)} - 4 \cos{\left(2 x \right)}\right)^{\prime}=8 x \cos{\left(2 x \right)} + 12 \sin{\left(2 x \right)}

f^{(4)}\left(x\right)=\left(f^{(3)}\left(x\right)\right)^{\prime}=\left(8 x \cos{\left(2 x \right)} + 12 \sin{\left(2 x \right)}\right)^{\prime}=- 16 x \sin{\left(2 x \right)} + 32 \cos{\left(2 x \right)}

f^{(5)}\left(x\right)=\left(f^{(4)}\left(x\right)\right)^{\prime}=\left(- 16 x \sin{\left(2 x \right)} + 32 \cos{\left(2 x \right)}\right)^{\prime}=- 32 x \cos{\left(2 x \right)} - 80 \sin{\left(2 x \right)}

f^{(6)}\left(x\right)=\left(f^{(5)}\left(x\right)\right)^{\prime}=\left(- 32 x \cos{\left(2 x \right)} - 80 \sin{\left(2 x \right)}\right)^{\prime}=64 x \sin{\left(2 x \right)} - 192 \cos{\left(2 x \right)}

f^{(7)}\left(x\right)=\left(f^{(6)}\left(x\right)\right)^{\prime}=\left(64 x \sin{\left(2 x \right)} - 192 \cos{\left(2 x \right)}\right)^{\prime}=128 x \cos{\left(2 x \right)} + 448 \sin{\left(2 x \right)}

f^{(8)}\left(x\right)=\left(f^{(7)}\left(x\right)\right)^{\prime}=\left(128 x \cos{\left(2 x \right)} + 448 \sin{\left(2 x \right)}\right)^{\prime}=- 256 x \sin{\left(2 x \right)} + 1024 \cos{\left(2 x \right)}

f^{(9)}\left(x\right)=\left(f^{(8)}\left(x\right)\right)^{\prime}=\left(- 256 x \sin{\left(2 x \right)} + 1024 \cos{\left(2 x \right)}\right)^{\prime}=- 512 x \cos{\left(2 x \right)} - 2304 \sin{\left(2 x \right)}

f^{(10)}\left(x\right)=\left(f^{(9)}\left(x\right)\right)^{\prime}=\left(- 512 x \cos{\left(2 x \right)} - 2304 \sin{\left(2 x \right)}\right)^{\prime}=1024 x \sin{\left(2 x \right)} - 5120 \cos{\left(2 x \right)}

Step 2: Evaluate the derivatives at the given point.

\left(f\left(0\right)\right)^{\prime }=0

\left(f\left(0\right)\right)^{\prime \prime }=-4

\left(f\left(0\right)\right)^{\prime \prime \prime }=0

\left(f\left(0\right)\right)^{\prime \prime \prime \prime }=32

\left(f\left(0\right)\right)^{\left(5\right)}=0

\left(f\left(0\right)\right)^{\left(6\right)}=-192

\left(f\left(0\right)\right)^{\left(7\right)}=0

\left(f\left(0\right)\right)^{\left(8\right)}=1024

\left(f\left(0\right)\right)^{\left(9\right)}=0

\left(f\left(0\right)\right)^{\left(10\right)}=-5120

Step 3: Use the calculated values to get a polynomial

f\left(x\right)\approx\frac{0}{0!}x^{0}+\frac{0}{1!}x^{1}+\frac{-4}{2!}x^{2}+\frac{0}{3!}x^{3}+\frac{32}{4!}x^{4}+\frac{0}{5!}x^{5}+\frac{-192}{6!}x^{6}+\frac{0}{7!}x^{7}+\frac{1024}{8!}x^{8}+\frac{0}{9!}x^{9}+\frac{-5120}{10!}x^{10}

Simplify,

f\left(x\right)\approx P\left(x\right) = -2x^{2}+\frac{4}{3}x^{4}- \frac{4}{15}x^{6}+\frac{8}{315}x^{8}- \frac{4}{2835}x^{10}

You might be interested in
Find the complex cube roots of 8(cos(4pi/5)+isin(4pi/5))
exis [7]

Answer:

-6.47+4.70i.  

Brainliest

Step-by-step explanation:

100% sure

7 0
4 years ago
BRAINIEST ANSWER PLEASE! ITS ABOUT AREA!
Diano4ka-milaya [45]
<span>46 square inches If you look at the figure in the diagram, you'll see that it consist of two rectangles next to each other. So the area of the entire figure is the sum of the area of both rectangles. The leftmost rectangle is 5 inches by 6 inches for an area of 30 square inches. The right triangle is a skinny rectangle that is 8 inches by 2 inches for an area of 16 square inches. And 30 square inches plus 16 square inches equals 46 square inches. An alternate way of considering the problem is that it's one large rectangle that's (5+8 = 13) inches long and 6 inches tall equaling 78 square inches, minus 2 other rectangles, both of which are 2 inches by 8 inches for an area of 16 square inches. And finally 78 square inches minus 16 square inches minus 16 square inches equals 46 square inches.</span>
7 0
3 years ago
Three times the difference of 5 minus a number is 27. find the number
Oxana [17]

Answer:

-4

Step-by-step explanation:

3(5-n)=27

solve

15-3n=27

subtract 15 from 2 sides

-3n=12

n=-4

8 0
3 years ago
In the figure, angle D measures 31° and angle A measures 27°.
Nastasia [14]
If we assume that the figure is a triangle with a supplementary angle outside the triangle ABD, ∠F. Given that angle D is 31 and angle A is 27. Therefore, angle B is 122. Then, angle F is supplementary to angle D, meaning angle F will have a measurement of 180 - 31 = 149. 
8 0
4 years ago
I will pay someone to do my geometry review sheet answer fast
Svetradugi [14.3K]

Answer:

where is it?

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
Other questions:
  • Can anyone help me on this ? I always struggle with this...
    12·1 answer
  • find the length of each isosceles right triangle when the hypotenuse is of the given measure given 8cm
    11·1 answer
  • The city of Venice, Italy, is slowly sinking, due to the unstable foundation on which it is built. The city loses about 0.078 in
    5·1 answer
  • Your anula salary of $42,500 is about to he increased by 2%.Explain the steps you would take to determine your new salary.What w
    14·1 answer
  • Find the amount of simple interest earned in one year on an account that has an interest rate of 3.2 and a principal of $250
    8·1 answer
  • Use the distributive property to find (x+1)(x+3)
    11·2 answers
  • Maddie has x dollars. After spending $90 on a purse, she will have $45. What is the value of x?
    11·1 answer
  • Does anyone have trichotillomania? Please only answer if you do and if you would like to talk abt it!
    13·1 answer
  • Kyle throws a baseball straight up from a height of 4 feet with an initial speed of 30 feet per second. If Kyle doesn't catch th
    10·1 answer
  • 2s+10-7s-8+3s-7<br> syplifying expression fyi​
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!