1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lana66690 [7]
3 years ago
13

Write the first three nonzero terms in the Maclaurin seriesfor xsin(-2x).

Mathematics
1 answer:
grandymaker [24]3 years ago
4 0

Answer:

The Maclaurin of xsin\left(-2x\right) is -2x^2+\frac{4}{3}x^4-\frac{4}{15}x^6+\frac{8}{315}x^8-\frac{4}{2835}x^{10}+\ldots.

Step-by-step explanation:

Taylor series of function f\left(x\right) at <em>a</em> is defined as:

\:f\left(x\right)=f\left(a\right)+\frac{f^'\left(a\right)}{1!}\left(x-a\right)+\frac{f^{''}\left(a\right)}{2!}\left(x-a\right)^2+\frac{f^{'''}\left(a\right)}{3!}\left(x-a\right)^3+\ldots

Maclaurin series of function f\left(x\right) is a Taylor series  of function f\left(x\right) at <em>a </em>= 0

\:f\left(x\right)=f\left(0\right)+\frac{f^'\left(0\right)}{1!}\left(x\right)+\frac{f^{''}\left(0\right)}{2!}\left(x\right)^2+\frac{f^{'''}\left(0\right)}{3!}\left(x\right)^3+\ldots

Step 1: Find the derivatives of f\left(x\right)=x\sin \left(-2x\right) at <em>a </em>= 0

f^{(1)}\left(x\right)=\left(f^{(0)}\left(x\right)\right)^{\prime}=\left(- x \sin{\left(2 x \right)}\right)^{\prime}=- 2 x \cos{\left(2 x \right)} - \sin{\left(2 x \right)}

f^{(2)}\left(x\right)=\left(f^{(1)}\left(x\right)\right)^{\prime}=\left(- 2 x \cos{\left(2 x \right)} - \sin{\left(2 x \right)}\right)^{\prime}=4 x \sin{\left(2 x \right)} - 4 \cos{\left(2 x \right)}

f^{(3)}\left(x\right)=\left(f^{(2)}\left(x\right)\right)^{\prime}=\left(4 x \sin{\left(2 x \right)} - 4 \cos{\left(2 x \right)}\right)^{\prime}=8 x \cos{\left(2 x \right)} + 12 \sin{\left(2 x \right)}

f^{(4)}\left(x\right)=\left(f^{(3)}\left(x\right)\right)^{\prime}=\left(8 x \cos{\left(2 x \right)} + 12 \sin{\left(2 x \right)}\right)^{\prime}=- 16 x \sin{\left(2 x \right)} + 32 \cos{\left(2 x \right)}

f^{(5)}\left(x\right)=\left(f^{(4)}\left(x\right)\right)^{\prime}=\left(- 16 x \sin{\left(2 x \right)} + 32 \cos{\left(2 x \right)}\right)^{\prime}=- 32 x \cos{\left(2 x \right)} - 80 \sin{\left(2 x \right)}

f^{(6)}\left(x\right)=\left(f^{(5)}\left(x\right)\right)^{\prime}=\left(- 32 x \cos{\left(2 x \right)} - 80 \sin{\left(2 x \right)}\right)^{\prime}=64 x \sin{\left(2 x \right)} - 192 \cos{\left(2 x \right)}

f^{(7)}\left(x\right)=\left(f^{(6)}\left(x\right)\right)^{\prime}=\left(64 x \sin{\left(2 x \right)} - 192 \cos{\left(2 x \right)}\right)^{\prime}=128 x \cos{\left(2 x \right)} + 448 \sin{\left(2 x \right)}

f^{(8)}\left(x\right)=\left(f^{(7)}\left(x\right)\right)^{\prime}=\left(128 x \cos{\left(2 x \right)} + 448 \sin{\left(2 x \right)}\right)^{\prime}=- 256 x \sin{\left(2 x \right)} + 1024 \cos{\left(2 x \right)}

f^{(9)}\left(x\right)=\left(f^{(8)}\left(x\right)\right)^{\prime}=\left(- 256 x \sin{\left(2 x \right)} + 1024 \cos{\left(2 x \right)}\right)^{\prime}=- 512 x \cos{\left(2 x \right)} - 2304 \sin{\left(2 x \right)}

f^{(10)}\left(x\right)=\left(f^{(9)}\left(x\right)\right)^{\prime}=\left(- 512 x \cos{\left(2 x \right)} - 2304 \sin{\left(2 x \right)}\right)^{\prime}=1024 x \sin{\left(2 x \right)} - 5120 \cos{\left(2 x \right)}

Step 2: Evaluate the derivatives at the given point.

\left(f\left(0\right)\right)^{\prime }=0

\left(f\left(0\right)\right)^{\prime \prime }=-4

\left(f\left(0\right)\right)^{\prime \prime \prime }=0

\left(f\left(0\right)\right)^{\prime \prime \prime \prime }=32

\left(f\left(0\right)\right)^{\left(5\right)}=0

\left(f\left(0\right)\right)^{\left(6\right)}=-192

\left(f\left(0\right)\right)^{\left(7\right)}=0

\left(f\left(0\right)\right)^{\left(8\right)}=1024

\left(f\left(0\right)\right)^{\left(9\right)}=0

\left(f\left(0\right)\right)^{\left(10\right)}=-5120

Step 3: Use the calculated values to get a polynomial

f\left(x\right)\approx\frac{0}{0!}x^{0}+\frac{0}{1!}x^{1}+\frac{-4}{2!}x^{2}+\frac{0}{3!}x^{3}+\frac{32}{4!}x^{4}+\frac{0}{5!}x^{5}+\frac{-192}{6!}x^{6}+\frac{0}{7!}x^{7}+\frac{1024}{8!}x^{8}+\frac{0}{9!}x^{9}+\frac{-5120}{10!}x^{10}

Simplify,

f\left(x\right)\approx P\left(x\right) = -2x^{2}+\frac{4}{3}x^{4}- \frac{4}{15}x^{6}+\frac{8}{315}x^{8}- \frac{4}{2835}x^{10}

You might be interested in
Can sum1 please help wit dis look at pic​
liraira [26]
Bd is 12 bc of Pythagorean theorem
5 0
3 years ago
Dawn is selling her MP3 player for 3 4 of the original price. The original price for the MP3 player was $40. How much is she sel
BARSIC [14]

Answer:

Dawn is selling her MP3 player for 30$.

Step-by-step explanation:

40 x 0.75 = 30

Hope this helps!! :)

4 0
3 years ago
Hey! Last day for me to do Algebra before exams so this is an emergency!! Help would definitely be appreciated and do NOT answer
il63 [147K]

Part 1 -

1. f(x) = 5(x-2)^2 + 4

axis of symmetry: x = 2

vertex: (2, 4)

2. f(x) = 12(x + 6)^2 - 5

axis of symmetry: x = -6

vertex:  (-6, -5)

3. f(x) = 2x^2 + 8x - 7

axis of symmetry: x = -2

vertex: (-2, -15)

I have to go somewhere right now, but I will get back to you as soon as I can (probably within a couple of hours) to finish answering the rest of your questions.


4 0
3 years ago
the equation shows the relationship between x and y: y = −7x 9 what is the slope of the equation? −7 −2 7 9
NNADVOKAT [17]
Slope intercept form
y = mx+b
y = -7x + 9
m = -7

8 0
3 years ago
Solve 4y^2-16y+16=0.
Snezhnost [94]

Answer:

y=2

Step-by-step explanation:

1) factor the equation

2) set factors equal to 0

7 0
3 years ago
Read 2 more answers
Other questions:
  • Can someone help me!!!!!!!
    15·1 answer
  • What is the equation of the following line? Be sure to scroll down first to see
    9·1 answer
  • Why did the paper rip when the student tried to stretch out the horizontal axis of his graph? Unscramble this letters to figure
    5·2 answers
  • 20% of a store’s sale are toys. If the store sells $1,200 in toys during one month, what are the store’s total sales?
    7·1 answer
  • Adding Fractions <br><br> <img src="https://tex.z-dn.net/?f=%5Cfrac%7B7%7D%7B12%7D%20%2B%5Cfrac%7B2%7D%7B12%7D" id="TexFormula1"
    15·2 answers
  • What is y=5x-12 in point-slope form?
    7·2 answers
  • The polynomial −2x2 + 700x represents the budget surplus of the town of Alphaville. Betaville's surplus is represented by x2 − 4
    13·1 answer
  • Someone help factor. This for me
    11·2 answers
  • 3 Claudia draws four cards with integers on them.
    6·1 answer
  • Where is the blue point on the number<br> line?<br> 3<br> ←++<br> 2.<br> Pls help
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!