Answer: 11369.46 m/s
Explanation:
We have the following data:
is the mass of the bowling ball
is the velocity of the bowling ball
is the mass of the ping-pong ball
is the velocity of the ping-pong ball
Now, the momentum
of the bowling ball is:
(1)
(2)
And the momentum
of the ping-pong ball is:
(3)
If the momentum of the bowling ball is equal to the momentum of the ping-pong ball:
(4)
(5)
Isolating
:
(6)
(7)
Finally:

<h2>
Answer:442758.96N</h2>
Explanation:
This problem is solved using Bernoulli's equation.
Let
be the pressure at a point.
Let
be the density fluid at a point.
Let
be the velocity of fluid at a point.
Bernoulli's equation states that
for all points.
Lets apply the equation of a point just above the wing and to point just below the wing.
Let
be the pressure of a point just above the wing.
Let
be the pressure of a point just below the wing.
Since the aeroplane wing is flat,the heights of both the points are same.

So,
Force is given by the product of pressure difference and area.
Given that area is
.
So,lifting force is 
Answer:
A light beam incident on a diffraction grating consists of waves with two different wavelengths. The separation of the two first order lines is great if
the dispersion is great
The 4 significant figures of 31,546,000 are all 8 of the digits.