1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leya [2.2K]
2 years ago
11

Traumatic brain injury such as a concussion results when the head undergoes a very large acceleration. Generally an acceleration

less than 800 m/s2 lasting for any length of time will not cause injury, whereas an acceleration greater than 1,000 m/s2 lasting for at least 1ms will cause injury.
Physics
1 answer:
eimsori [14]2 years ago
8 0

The complete text of the problem is:

<em>"Traumatic brain injury such as concussion results when the head undergoes a very large acceleration. Generally, an acceleration less than 800 m/s2 lasting for any length of time will not cause injury, whereas an acceleration greater than 1000 m/s2 lasting for at least 1 ms will cause injury. Suppose a small child rolls off a bed that is 0.43 m above the floor. If the floor is hardwood, the child's head is brought to rest in approximately 1.8 mm. If the floor is carpeted, this stopping distance is increased to about 1.1 cm. Calculate the magnitude and duration of the deceleration in both cases, to determine the risk of injury. Assume the child remains horizontal during the fall to the floor. Note that a more complicated fall could result in a head velocity greater or less than the speed you calculate. "</em>

<em />

<u>Solution:</u>

1) Acceleration: -2336 m/s^2 on the hardwood floor, -382 m/s^2 on the carpeted floor

First of all, we need to calculate the speed of the child just before he hits the floor. This can be done by using the equation

v^2 - u^2 = 2ad

where

v is the final speed

u = 0 is the initial speed (the child starts from rest)

a = g = 9.8 m/s^2 is the acceleration of gravity

d = 0.43 m is the distance covered by the child as he falls from the bed

Solving for v,

v=\sqrt{2ad}=\sqrt{2(9.8)(0.43)}=2.9 m/s

Now we can analyze the moment of the collision. The child hits the floor with an initial speed of v = 2.9 m/s, and he comes to a stop, so the final speed is v' = 0. If the floor is hardwood, the stopping distance is

d = 1.8 mm = 0.0018 m

So we can find the acceleration by using again the equation

v'^2 - v^2 = 2ad

Solving for a,

a=\frac{v'^2 - v^2}{2d}=\frac{0-2.9^2}{2(0.0018)}=-2336 m/s^2

For the carpeted floor instead,

d=1.1 cm = 0.011 m

therefore the acceleration is

a=\frac{v'^2 - v^2}{2d}=\frac{0-2.9^2}{2(0.011)}=-382 m/s^2

2) Duration: 1.24 ms for the hardwood floor, 7.59 ms for the carpeted floor

We can find the duration of the collision in both cases by using the equation of the acceleration

a=\frac{v'-v}{t}

where

v' = 0

v = 2.9 m/s

For the hardwood floor,

a=-2336 m/s^2

So the duration of the collision is

t = \frac{v'-v}{a}=\frac{0-2.9}{-2336}=0.00124 s = 1.24 ms

For the carpeted floor,

a=-382 m/s^2

So the duration of the collision is

t = \frac{v'-v}{a}=\frac{0-2.9}{-382}=0.00759 s = 7.59 ms

We can now comment the results using the initial statement of the problem:

"Generally an acceleration less than 800 m/s2 lasting for any length of time will not cause injury, whereas an acceleration greater than 1,000 m/s2 lasting for at least 1ms will cause injury"

Therefore, the fall on the hardwood floor can result in injury (since the acceleration is greater than 1,000 m/s2 for more than 1 ms), while the fall on the carpeted floor is not dangerous (much less than 1000 m/s^2).

You might be interested in
In the Bohr model of the hydrogen atom, an electron moves in a circular path around a proton. The speed of the electron is appro
blondinia [14]
In order to answer these questions, we need to know the charges on
the electron and proton, and then we need to know the electron's mass. 
I'm beginning to get the creepy feeling that, in return for the generous
5 points, you also want me to go and look these up so I can use them
in calculations ... go and collect my own straw to make the bricks with,
as it were. 

Ok, Rameses:

Elementary charge . . . . .  1.6 x 10⁻¹⁹  coulomb
                                        negative on the electron
                                        plussitive on the proton

Electron rest-mass . . . . .  9.11 x 10⁻³¹  kg


a).  The force between two charges is

      F  =  (9 x 10⁹) Q₁ Q₂ / R²

          =  (9 x 10⁹ m/farad) (-1.6 x 10⁻¹⁹C) (1.6 x 10⁻¹⁹C) / (5.35 x 10⁻¹¹m)²

          =     ( -2.304 x 10⁻²⁸) / (5.35 x 10⁻¹¹)²

          =          8.05 x 10⁻⁸  Newton .


b).  Centripetal acceleration  = 

                                               v² / r  .

                  A  =  (2.03 x 10⁶)² / (5.35 x 10⁻¹¹)

                     =      7.7 x 10²²  m/s² .

That's an enormous acceleration ... about  7.85 x 10²¹  G's !
More than enough to cause the poor electron to lose its lunch.

It would be so easy to check this work of mine ...
First I calculated the force, then I calculated the centripetal acceleration.
I didn't use either answer to find the other one, and I didn't use  "  F = MA "
either.

I could just take the ' F ' that I found, and the 'A' that I found, and the
electron mass that I looked up, and mash the numbers together to see
whether  F = M A .

I'm going to leave that step for you.   Good luck !
4 0
3 years ago
Nanotechnology is proving ineffective at helping clean up PCB’s. True orFalse
tester [92]
False, <span>Nanotechnology is proving effective at helping clean up PCB’s.</span>
8 0
3 years ago
Read 2 more answers
Find the image position for a picture placed 3.0 cm outside the focal point of a converging lens with a 4.0 cm focal length. a.
horrorfan [7]
<span>Answer: Using 1/f = 1/d' + 1/d ...(where d' object distance and d is image distance) 1/4 = 1/7 + 1/d 1/4 - 1/7 = 1/d 3/28 = 1/d d = 28/3 d = 9.33 cm</span>
5 0
3 years ago
A modern compact fluorescent lamp contains 1.4 mg of mercury (Hg). If each mercury atom in the lamp were to emit a single photon
Reika [66]

Answer:

A. 1.64 J

Explanation:

First of all, we need to find how many moles correspond to 1.4 mg of mercury. We have:

n=\frac{m}{M_m}

where

n is the number of moles

m = 1.4 mg = 0.0014 g is the mass of mercury

Mm = 200.6 g/mol is the molar mass of mercury

Substituting, we find

n=\frac{0.0014 g}{200.6 g/mol}=7.0\cdot 10^{-6} mol

Now we have to find the number of atoms contained in this sample of mercury, which is given by:

N=n N_A

where

n is the number of moles

N_A=6.022\cdot 10^{23} mol^{-1} is the Avogadro number

Substituting,

N=(7.0\cdot 10^{-6} mol)(6.022\cdot 10^{23} mol^{-1})=4.22\cdot 10^{18} atoms

The energy emitted by each atom (the energy of one photon) is

E_1 = \frac{hc}{\lambda}

where

h is the Planck constant

c is the speed of light

\lambda=508 nm=5.08\cdot 10^{-7}nm is the wavelength

Substituting,

E_1 = \frac{(6.63\cdot 10^{-34} Js)(3\cdot 10^8 m/s)}{5.08\cdot 10^{-7} m}=3.92\cdot 10^{-19} J

And so, the total energy emitted by the sample is

E=nE_1 = (4.22\cdot 10^{18} )(3.92\cdot 10^{-19}J)=1.64 J

4 0
3 years ago
Please help meeeee!!!!!!
Vinil7 [7]

Answer:

Net force

Explanation:

Bruh, easy question

3 0
2 years ago
Other questions:
  • diving to work one morning, you get a flat tire. when using the car jack, you apply 120 N of force to the jack and the jack in t
    10·1 answer
  • on 28 may _______ at Chaghi, Balochistan; Dr A.Q Khan commanded to perform six successful nuclear explsions.
    5·1 answer
  • In a common but dangerous prank, a chair is pulled away as a person is moving downward to sit on it, causing the victim to land
    6·1 answer
  • Jupiter’s Great Red Spot rotates completely every six days. If the spot is circular (not quite true, but a reasonable approximat
    6·1 answer
  • What is the ostrich’s average acceleration from 9.0 to 18s
    15·1 answer
  • A proton is traveling to the right at 2.0 * 107 m/s. It has a head on perfectly elastic collision with a carbon atom. The mass o
    9·2 answers
  • Some of the largest volcanoes in the solar system are on mars. The most likely explanation is that mars
    15·1 answer
  • A car advertisement states that a certain car can accelerate from rest to 70 km/h in 7 seconds. Find the car’s acceleration. Use
    14·1 answer
  • एक वाक्य में उत्तर लिखिए : 1. आज किसको बचाने की मांग है? 2. जीव कब तक जगत में रह सकता है? १. कवि किसको शुद्ध रखने की बात करते है
    7·2 answers
  • The type of torque wrench designed for tightening clamping bands on underground pipe is the ___________________
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!