Answer:
The answer is "MS and QS".
Step-by-step explanation:
Given ΔMNQ is isosceles with base MQ, and NR and MQ bisect each other at S. we have to prove that ΔMNS ≅ ΔQNS.
As NR and MQ bisect each other at S
⇒ segments MS and SQ are therefore congruent by the definition of bisector i.e MS=SQ
In ΔMNS and ΔQNS
MN=QN (∵ MNQ is isosceles triangle)
∠NMS=∠NQS (∵ MNQ is isosceles triangle)
MS=SQ (Given)
By SAS rule, ΔMNS ≅ ΔQNS.
Hence, segments MS and SQ are therefore congruent by the definition of bisector.
The correct option is MS and QS
Answer:
isosceles triangle
Step-by-step explanation:
two equal sides. is this the question only?
What is the expression though?
Answer:
I think this one would be none of the above
Given QR is congrent to LN and QR = 4x + 2 and LN = x + 7.
So, QR = LN
Hence, we can set up an equation as following:
4x + 2 = x + 7
4x + 2 - x = x + 7 - x Subtract x from each sides.
3x + 2 = 7 By simplifying.
3x + 2 - 2 = 7 - 2 Subtract 2 from each sides.
3x = 5
Divide each sides by 3 to isolate x.
So,
Next step is to plug in in QR = 4x+2 to get length of QR.
So,
Since 2 can be written as 2/1.
By multiplying the second fraction by the common denominator 3.
By simplifying the second fraction.
So,