1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bezzdna [24]
4 years ago
12

Plz help me I have no idea how to do this plz help!

Mathematics
1 answer:
Vika [28.1K]4 years ago
8 0
You need to multiply the amount by the tax
You might be interested in
If AB=20, then AB+CD=?​
Leona [35]

Answer:

20*20+CD=400+CD

Step-by-step explanation:

Multiply  

20

by  

20

6 0
3 years ago
How do I solve for y:<br> x²y² = 12/z²
Vika [28.1K]

Answer:

Y=Srt(12xs^2/z^2)

Step-by-step explanation:

Firstly

We multiply both sides with 1/x^2

We get

Y^2=12/z^2*1/x^2

Y^2=12x^2/z^2

Next: introduce a srt root

We have

Y=srt(12x^2/z^2)

8 0
3 years ago
Question part points submissions used solve the given differential equation by separation of variables. dx + e2xdy = 0
lina2011 [118]
Try this:
if given dx+e²ˣdy=0, then
dy=- \frac{dx}{e^{-2x}} \ =\ \textgreater \  \  \int dy=-\int e^{-2x}dx; \ =\ \textgreater \  \ y= \frac{1}{2}e^{-2x}+C;
4 0
3 years ago
How do you do this TwT
tangare [24]

Answer:

Step-by-step explanation:

First step plug the numbers into the equation.

-10/(5+2) = (-10/5) + (-10/2)

Solve both sides of the equation separately.

-10/(5+2) Use distributive property, multiply both 5 and 2 by -10.

= -50 + (-20) = -70

-10/5 + -10/2 Multiply the fractions so they can be added together.

-10/5*2 = -20/10  -10/2*5 = -50/10

-20/10 + -50/10 = -70

Now you have solved both equations and they are both equal to -70, so you have verified that the equations are equal to each other because they both equal -70.

5 0
3 years ago
A bicycle training wheel has a radius of 3 inches. The bicycle wheel has a radius of 10 inches. Approximately how much smaller,
zhuklara [117]

Answer:

285.74\text{ inch}^2

Step-by-step explanation:

GIVEN: A bicycle training wheel has a radius of 3\text{ inch}. The bicycle wheel has a radius of 10\text{ inch}.

TO FIND: Approximately how much smaller, in square inches, is the area of the training wheel than the area of the regular wheel.

SOLUTION:

radius of bicycle wheel =10\text{ inch}

area of bicycle wheel =\pi r^2

putting value,

area of bicycle wheel =3.14\times10^2

                                    =314\text{ inch}^2

radius of bicycle training wheel =3\text{ inch}

area of bicycle training wheel =\pi r^2

putting value,

area of bicycle wheel =3.14\times3^2

                                    =28.26\text{ inch}^2

difference in area of bicycle wheel and bicycle training wheel

=\text{area of bicycle wheel}-\text{area of bicycle training wheel}

=314-28.26

=285.74\text{ inch}^2

hence the training wheel is 285.74\text{ inch}^2 smaller than regular wheel

4 0
3 years ago
Other questions:
  • How does 4 2/5 = 4.40
    9·2 answers
  • You are asked to choose your favourite season of the year, and then your second favourite season. Draw a tree diagram to display
    7·1 answer
  • 0.9x + 2.3x = -6.4<br>I don't understand this lol​
    6·2 answers
  • What is the product of 3.39 and 10(2)
    9·1 answer
  • I need help pleaseee its due in 10 min
    7·2 answers
  • What numbers are a distance of 9 units from −5 on a number line?
    8·2 answers
  • One leg of a right triangle is 7 inches longer than the other leg, and the hypotenuse is 35 inches. Find the lengths of the legs
    8·1 answer
  • Hi i need some help on this, please explain
    9·1 answer
  • each sentence shows the number of pages a student reads in a book and the amount of time it takes those pages to read .how many
    6·1 answer
  • Mohal bought 20 chicken wings for
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!