1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
wolverine [178]
3 years ago
5

If a data value in a normal distribution has a negative z-score, which of the following must be true?

Mathematics
2 answers:
Fynjy0 [20]3 years ago
8 0

Answer:

C. The data value must be less than the mean.

Step-by-step explanation:

We have been given a statement and we are asked to choose the correct option about our given statement.

Since a z-score tells us that a data value is how many standard deviation away from mean.

To find the z-score for a given data value or raw score, we subtract the mean of data set from the given raw score and divide the result by standard deviation of the data set

If a data value is greater than mean, then it will have a positive z-score. If a data value is smaller than mean, then it will have a negative z-score.

Upon looking at our given choices we can see that option C is the correct choice.

Tamiku [17]3 years ago
4 0
<span>The data value must be less than the mean.</span>
You might be interested in
R(2)=120 and r(4)=378 divide the difference in the r(x) values by the difference in the x-value
Thepotemich [5.8K]

Answer:

im not sure ask siri

Step-by-step explanation:

she knows everything

4 0
3 years ago
An office manager estimates that she spends 40% of her 30-minute lunch
Elina [12.6K]

Answer:

answer = 12 min

Step-by-step explanation:

40% of 30 min = ?

10% of 30 min = 3

3*4 = 12

Thus, she spends 12 min of her 30 min lunch driving

P.S.

If the answer is wrong, then multiply it by two and retry

4 0
3 years ago
What is the base area of Box 3?
Leya [2.2K]
There is no box’s also give me brainliest answer
4 0
3 years ago
Read 2 more answers
Find the distance between the given points (-7,5) and (-8,4)
yulyashka [42]

Answer:

1

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
(10 points) Consider the initial value problem y′+3y=9t,y(0)=7. Take the Laplace transform of both sides of the given differenti
Rashid [163]

Answer:

The solution

Y (s) = 9( -1 +3 t + e^{-3 t} ) + 7 e ^{-3 t}

Step-by-step explanation:

<u><em>Explanation</em></u>:-

Consider the initial value problem y′+3 y=9 t,y(0)=7

<em>Step(i)</em>:-

Given differential problem

                           y′+3 y=9 t

<em>Take the Laplace transform of both sides of the differential equation</em>

                L( y′+3 y) = L(9 t)

 <em>Using Formula Transform of derivatives</em>

<em>                 L(y¹(t)) = s y⁻(s)-y(0)</em>

  <em>  By using Laplace transform formula</em>

<em>               </em>L(t) = \frac{1}{S^{2} }<em> </em>

<em>Step(ii):-</em>

Given

             L( y′(t)) + 3 L (y(t)) = 9 L( t)

            s y^{-} (s) - y(0) +  3y^{-}(s) = \frac{9}{s^{2} }

            s y^{-} (s) - 7 +  3y^{-}(s) = \frac{9}{s^{2} }

Taking common y⁻(s) and simplification, we get

             ( s +  3)y^{-}(s) = \frac{9}{s^{2} }+7

             y^{-}(s) = \frac{9}{s^{2} (s+3}+\frac{7}{s+3}

<em>Step(iii</em>):-

<em>By using partial fractions , we get</em>

\frac{9}{s^{2} (s+3} = \frac{A}{s} + \frac{B}{s^{2} } + \frac{C}{s+3}

  \frac{9}{s^{2} (s+3} =  \frac{As(s+3)+B(s+3)+Cs^{2} }{s^{2} (s+3)}

 On simplification we get

  9 = A s(s+3) +B(s+3) +C(s²) ...(i)

 Put s =0 in equation(i)

   9 = B(0+3)

 <em>  B = 9/3 = 3</em>

  Put s = -3 in equation(i)

  9 = C(-3)²

  <em>C = 1</em>

 Given Equation  9 = A s(s+3) +B(s+3) +C(s²) ...(i)

Comparing 'S²' coefficient on both sides, we get

  9 = A s²+3 A s +B(s)+3 B +C(s²)

 <em> 0 = A + C</em>

<em>put C=1 , becomes A = -1</em>

\frac{9}{s^{2} (s+3} = \frac{-1}{s} + \frac{3}{s^{2} } + \frac{1}{s+3}

<u><em>Step(iv):-</em></u>

y^{-}(s) = \frac{9}{s^{2} (s+3}+\frac{7}{s+3}

y^{-}(s)  =9( \frac{-1}{s} + \frac{3}{s^{2} } + \frac{1}{s+3}) + \frac{7}{s+3}

Applying inverse Laplace transform on both sides

L^{-1} (y^{-}(s) ) =L^{-1} (9( \frac{-1}{s}) + L^{-1} (\frac{3}{s^{2} }) + L^{-1} (\frac{1}{s+3}) )+ L^{-1} (\frac{7}{s+3})

<em>By using inverse Laplace transform</em>

<em></em>L^{-1} (\frac{1}{s} ) =1<em></em>

L^{-1} (\frac{1}{s^{2} } ) = \frac{t}{1!}

L^{-1} (\frac{1}{s+a} ) =e^{-at}

<u><em>Final answer</em></u>:-

<em>Now the solution , we get</em>

Y (s) = 9( -1 +3 t + e^{-3 t} ) + 7 e ^{-3t}

           

           

5 0
3 years ago
Other questions:
  • What number is 21% more than 5/11?
    9·1 answer
  • Sum of 1.3409, 150 and 4891.1
    6·2 answers
  • If A = {1, 3, 5} and B = {1, 2, 3, 4, 5, 6} then A ∪ B<br> Ø<br> {1, 2, 3, 4, 5, 6}<br> {2, 4, 6}
    5·2 answers
  • HELP HELP HURRY!!!!!
    5·2 answers
  • Write the following comparison as a ratio reduced to lowest terms 9 nickels to 3 dimes
    7·1 answer
  • PLEASE HELP!!! (20 POINTS)
    11·1 answer
  • Find the difference. Enter your answer in the box below as a fraction, using
    13·1 answer
  • -8(y + 5) = -8y - 40 TRUE or FALSE
    5·1 answer
  • PLEASE HURRY
    8·2 answers
  • What is 6 percent of 1,600,00 dollars
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!