Answer:
adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using objects, drawings, and equations with a symbol for the unknown number to represent the problem.
Step-by-step explanation:
please mark brainleist
Pythagoras Theorem:
hipotenuse²=leg₁²+leg₂²
First posible triangle:
hypotenuse=13 (13²=169)
leg₁=12 ( 12²=144)
leg₂=5 (5²=25)
13³=144 + 25
Answer:can be side lengths of a triangle
Second triangle:
hypotenuse=12.6 (12.6²=158.76)
leg₁=6.7 ( 6.7²=44.89)
leg₂=6.5 (6.5²=42.25)
leg₁²+leg₂²=44.89+42.25=87.14≠158.76
Answer: cannot be side lenghts of a triangle.
third triangle:
hypotenuse=13 (13²=169)
leg₁=12 ( 12²=144)
leg₂=11 (11²=121)
leg₁²+leg₂²=144+121=265≠169
Answer: cannot be side lenghts of a triangle.
fourth triangle:
hypotenuse=13 (13²=169)
leg₁=6 ( 6²=36)
leg₂=4 (4²=16)
leg₁²+leg₁²=36+16=52≠169
Answer: cannot be side lenghts of a triangle.
Answer:
n=3
m=2
Step-by-step explanation:
This done by factorizing thier powers.
Answer:

Step-by-step explanation:
From figure,

In triangle 

![\Rightarrow (a+b)^2=(a-b)^2+(O' D)^2\\\Rightarrow a^2+b^2+2ab-a^2-b^2+2ab=(O' D)^2\\\Rightarrow 4ab=(O' D)^2\\\Rightarrow O'D=2\sqrt{ab} \\\Rightarrow O' D=2\sqrt{ab}=AB \quad \quad [\because O' DAB\;\; \text{is a rectangle.}]](https://tex.z-dn.net/?f=%5CRightarrow%20%28a%2Bb%29%5E2%3D%28a-b%29%5E2%2B%28O%27%20D%29%5E2%5C%5C%5CRightarrow%20a%5E2%2Bb%5E2%2B2ab-a%5E2-b%5E2%2B2ab%3D%28O%27%20D%29%5E2%5C%5C%5CRightarrow%204ab%3D%28O%27%20D%29%5E2%5C%5C%5CRightarrow%20O%27D%3D2%5Csqrt%7Bab%7D%20%5C%5C%5CRightarrow%20O%27%20D%3D2%5Csqrt%7Bab%7D%3DAB%20%5Cquad%20%5Cquad%20%5B%5Cbecause%20O%27%20DAB%5C%3B%5C%3B%20%5Ctext%7Bis%20a%20rectangle.%7D%5D)
Hence, 
Answer:
Step-by-step explanation:
Use synthetic division to answer this. If the remainder is zero, then we can safely assume the divisor (x + 7) is a factor of the polynomial f(x)= x^3-3x^2+2x-8.
We use -7 as the divisor in synth. div. This comes from the factor (x + 7):
-7 / 1 3 2 -8
-7 28 -210
-------------------------
1 -4 30 -218
Here, the remainder is -218, not zero, so no, (x+7) is not a factor of f(x)= x^3-3x^2+2x-8.