Solution :
Demand for cola : 100 – 34x + 5y
Demand for cola : 50 + 3x – 16y
Therefore, total revenue :
x(100 – 34x + 5y) + y(50 + 3x – 16y)
R(x,y) = 

In order to maximize the revenue, set



.............(i)


.............(ii)
Solving (i) and (ii),
4 x (i) ⇒ 272x - 32y = 400
(ii) ⇒ (-<u>) 8x - 32y = -50 </u>
264x = 450
∴ 

So, x ≈ $ 1.70 and y = $ 1.99
R(1.70, 1.99) = $ 134.94
Thus, 1.70 dollars per cola
1.99 dollars per iced ted to maximize the revenue.
Maximum revenue = $ 134.94
Answer: 5
Step-by-step explanation:
use formula a^2 + b^2 = c^2
a^2 + 12^2 = 13^2
a^2 + 144 = 169
- 144 -144
a^2 = 25
sqrt sqrt
a = sqrt (25)
a = 5
1st option
{(3,0) e (0,9)}; {(2,0) e (0,-4)}; {(1,0) e (0,-5)}
see screenshot
sorry btw, no hablo espanol
<span>(-45 + (-12) / 2 = -28.5
</span>So the answer is -28.5