Answer:
x = 8
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality
<u>Algebra I</u>
Step-by-step explanation:
<u>Step 1: Define</u>
3(x - 2) + 8 = 2(x + 5)
<u>Step 2: Solve for </u><em><u>x</u></em>
- (Parenthesis) Distribute: 3x - 6 + 8 = 2x + 10
- Combine like terms: 3x + 2 = 2x + 10
- {Subtraction Property of Equality] Subtract 2x on both sides: x + 2 = 10
- [Subtraction Property of Equality] Subtract 2 on both sides: x = 8
<u>Step 3: Check</u>
<em>Plug in x into the original equation to verify it's a solution.</em>
- Substitute in <em>x</em>: 3(8 - 2) + 8 = 2(8 + 5)
- (Parenthesis) Subtract/Add: 3(6) + 8 = 2(13)
- Multiply: 18 + 8 = 26
- Add: 26 = 26
Here we see that 26 does indeed equal 26.
∴ x = 8 is the solution to the equation.
Answer:
She must be sure there is at least $135 in her bank account for the purchase.
She must check to see if any automatic payments are scheduled for her account.
Step-by-step explanation:
just finished that assignment
Answer:
r = √13
Step-by-step explanation:
Starting with x^2+y^2+6x-2y+3, group like terms, first x terms and then y terms: x^2 + 6x + y^2 -2y = 3. Please note that there has to be an " = " sign in this equation, and that I have taken the liberty of replacing " +3" with " = 3 ."
We need to "complete the square" of x^2 + 6x. I'll just jump in and do it: Take half of the coefficient of the x term and square it; add, and then subtract, this square from x^2 + 6x: x^2 + 6x + 3^2 - 3^2. Then do the same for y^2 - 2y: y^2 - 2y + 1^2 - 1^2.
Now re-write the perfect square x^2 + 6x + 9 by (x + 3)^2. Then we have x^2 + 6x + 9 - 9; also y^2 - 1y + 1 - 1. Making these replacements:
(x + 3)^2 - 9 + (y - 1)^2 -1 = 3. Move the constants -9 and -1 to the other side of the equation: (x + 3)^2 + (y - 1)^2 = 3 + 9 + 1 = 13
Then the original equation now looks like (x + 3)^2 + (y - 1)^2 = 13, and this 13 is the square of the radius, r: r^2 = 13, so that the radius is r = √13.
Answer:
The third one, x+(x+1)+(x+2)=-21 because x, x+1 and x+2 are three consecutive numbers.
We are asked to give the exact value of <span>cos(arcsin(one fourth)). In this case, we shift first the setting to degrees since this involves angles. we determine first arc sin of one fourth equal to 14.48 degrees. then we take the cos of 14.48 degrees equal to 0.9682. Answer is 0.9682.</span>