Answer:
19 houses
Step-by-step explanation:
90*(2/5)=36
90-36=54
54*(2/3)=37
54-37=19
Answer:
c. m∠1 + m∠6 = m∠4 + m∠6
Step-by-step explanation:
Given: The lines l and m are parallel lines.
The parallel lines cut two transverse lines. Here we can use the properties of transverse and find the incorrect statements.
a. m∠1 + m∠2 = m∠3 + m∠4
Here m∠1 and m∠2 are supplementary angles add upto 180 degrees.
m∠3 and m∠4 are supplementary angles add upto 180 degrees.
Therefore, the statement is true.
b. m∠1 + m∠5 = m∠3 + m∠4
m∠1 + m∠5 = 180 same side of the adjacent angles.
m∠3 + m∠4 = 180, supplementary angles add upto 180 degrees.
Therefore, the statement is true.
Now let's check c.
m∠1 + m∠6 = m∠4 + m∠6
We can cancel out m∠6, we get
m∠1 = m∠4 which is not true
Now let's check d.
m∠3 + m∠4 = m∠7 + m∠4
We can cancel out m∠4, we get
m∠3 = m∠7, alternative interior angles are equal.
It is true.
Therefore, answer is c. m∠1 + m∠6 = m∠4 + m∠6
Answer: The ratio is 2.39, which means that the larger acute angle is 2.39 times the smaller acute angle.
Step-by-step explanation:
I suppose that the "legs" of a triangle rectangle are the cathati.
if L is the length of the shorter leg, 2*L is the length of the longest leg.
Now you can remember the relation:
Tan(a) = (opposite cathetus)/(adjacent cathetus)
Then there is one acute angle calculated as:
Tan(θ) = (shorter leg)/(longer leg)
Tan(φ) = (longer leg)/(shorter leg)
And we want to find the ratio between the measure of the larger acute angle and the smaller acute angle.
Then we need to find θ and φ.
Tan(θ) = L/(2*L)
Tan(θ) = 1/2
θ = Atan(1/2) = 26.57°
Tan(φ) = (2*L)/L
Tan(φ) = 2
φ = Atan(2) = 63.43°
Then the ratio between the larger acute angle and the smaller acute angle is:
R = (63.43°)/(26.57°) = 2.39
This means that the larger acute angle is 2.39 times the smaller acute angle.
Answer:
3x+9
Step-by-step explanation:
i think since it is across from there
Answer:
0
Step-by-step explanation:
all real numbers are solutions