Compare 1/7 to consecutive multiples of 1/9. This is easily done by converting the fractions to a common denominator of LCM(7, 9) = 63:
1/9 = 7/63
2/9 = 14/63
while
1/7 = 9/63
Then 1/7 falls between 1/9 and 2/9, so 1/7 = 1/9 plus some remainder. In particular,
1/7 = 1/9¹ + 2/63.
We do the same sort of comparison with the remainder 2/63 and multiples of 1/9² = 1/81. We have LCM(63, 9²) = 567, and
1/9² = 7/567
2/9² = 14/567
3/9² = 21/567
while
2/63 = 18/567
Then
2/63 = 2/9² + 4/567
so
1/7 = 1/9¹ + 2/9² + 4/567
Compare 4/567 with multiples of 1/9³ = 1/729. LCM(567, 9³) = 5103, and
1/9³ = 7/5103
2/9³ = 14/5103
3/9³ = 21/5103
4/9³ = 28/5103
5/9³ = 35/5103
6/9³ = 42/5103
while
4/567 = 36/5103
so that
4/567 = 5/9³ + 1/5103
and so
1/7 = 1/9¹ + 2/9² + 5/9³ + 1/5103
Next, LCM(5103, 9⁴) = 45927, and
1/9⁴ = 7/45927
2/9⁴ = 14/45927
while
1/5103 = 9/45927
Then
1/5103 = 1/9⁴ + 2/45927
so
1/7 = 1/9¹ + 2/9² + 5/9³ + 1/9⁴ + 2/45927
One last time: LCM(45927, 9⁵) = 413343, and
1/9⁵ = 7/413343
2/9⁵ = 14/413343
3/9⁵ = 21/413343
while
2/45927 = 18/413343
Then
2/45927 = 2/9⁵ + remainder
so
1/7 = 1/9¹ + 2/9² + 5/9³ + 1/9⁴ + 2/9⁵ + remainder
Then the base 9 expansion of 1/7 is
0.12512..._9
Answer:
the answer is 10 percent off because that is 13 dollars
Step-by-step explanation:
if you do 130 times 10 it is 1300, then divide by 100 it equals 13 dollars off. if you did the other coupon it would only be 10 dollars off
Answer: x=20
Step-by-step explanation:
(5y - 1) + (-2y + 4) = 5y - 1 - 2y + 4
= 5y - 2y - 1 + 4
= 3y + 3 [OPTION B]
Answer: 19/20
Step-by-step explanation:
7/10 turns into 14/20
1/4 turns into 5/20
14/20 + 5/20
14 + 5 over 20
= 19/20
19/20 is in simplest form.