well, since we know the endpoints for the diameter, its midpoint will be where the center of the circle is located, so

and if we get the distance between those endpoints, and take half of that, that'd be the radius of it.
![~~~~~~~~~~~~\textit{distance between 2 points} \\\\ (\stackrel{x_1}{-10}~,~\stackrel{y_1}{5})\qquad (\stackrel{x_2}{-4}~,~\stackrel{y_2}{11})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ \stackrel{diameter}{d}=\sqrt{[-4 - (-10)]^2 + [11 - 5]^2}\implies d=\sqrt{(-4+10)^2+6^2} \\\\\\ d=\sqrt{6^2+6^2}\implies d=\sqrt{72}~\hfill \stackrel{radius=half~that}{\cfrac{\sqrt{72}}{2}} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%20%5C%5C%5C%5C%20%28%5Cstackrel%7Bx_1%7D%7B-10%7D~%2C~%5Cstackrel%7By_1%7D%7B5%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B-4%7D~%2C~%5Cstackrel%7By_2%7D%7B11%7D%29%5Cqquad%20%5Cqquad%20d%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7Bdiameter%7D%7Bd%7D%3D%5Csqrt%7B%5B-4%20-%20%28-10%29%5D%5E2%20%2B%20%5B11%20-%205%5D%5E2%7D%5Cimplies%20d%3D%5Csqrt%7B%28-4%2B10%29%5E2%2B6%5E2%7D%20%5C%5C%5C%5C%5C%5C%20d%3D%5Csqrt%7B6%5E2%2B6%5E2%7D%5Cimplies%20d%3D%5Csqrt%7B72%7D~%5Chfill%20%5Cstackrel%7Bradius%3Dhalf~that%7D%7B%5Ccfrac%7B%5Csqrt%7B72%7D%7D%7B2%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\textit{equation of a circle}\\\\ (x- h)^2+(y- k)^2= r^2 \qquad center~~(\stackrel{-7}{ h},\stackrel{8}{ k})\qquad \qquad radius=\stackrel{\frac{\sqrt{72}}{2}}{ r} \\\\\\\ [x-(-7)]^2~~ + ~~[y-8]^2~~ = ~~\left( \frac{\sqrt{72}}{2} \right)^2\implies (x+7)^2~~ + ~~(y-8)^2~~ = ~~18](https://tex.z-dn.net/?f=%5Ctextit%7Bequation%20of%20a%20circle%7D%5C%5C%5C%5C%20%28x-%20h%29%5E2%2B%28y-%20k%29%5E2%3D%20r%5E2%20%5Cqquad%20center~~%28%5Cstackrel%7B-7%7D%7B%20h%7D%2C%5Cstackrel%7B8%7D%7B%20k%7D%29%5Cqquad%20%5Cqquad%20radius%3D%5Cstackrel%7B%5Cfrac%7B%5Csqrt%7B72%7D%7D%7B2%7D%7D%7B%20r%7D%20%5C%5C%5C%5C%5C%5C%5C%20%5Bx-%28-7%29%5D%5E2~~%20%2B%20~~%5By-8%5D%5E2~~%20%3D%20~~%5Cleft%28%20%5Cfrac%7B%5Csqrt%7B72%7D%7D%7B2%7D%20%5Cright%29%5E2%5Cimplies%20%28x%2B7%29%5E2~~%20%2B%20~~%28y-8%29%5E2~~%20%3D%20~~18)
A. They are not similar because their corresponding angles are not congruent.
Their angles are not the same.
The 1st triangle is a scalene triangle (a triangle that has 3 unequal sides and angles)
The 2nd triangle is an isosceles triangle (a triangle that has 2 congruent/equal sides and 2 congruent angles)
Answer: 920
Step-by-step explanation:
828 divided by 0.9 will give you the answer
Answer: No, an integer is a whole number that can be either negative or positive :)
Step-by-step explanation: