Answer:
Option B. 
Step-by-step explanation:
we know that
If a ordered pair lie on the circle. then the ordered pair must satisfy the equation of the circle
step 1
Find the equation of the circle
we know that
The equation of the circle in center radius form is equal to

where
r is the radius of the circle
(h,k) is the center of the circle
substitute the values


step 2
Verify each case
case A) 
substitute the value of
in the equation of the circle and then compare the results

------> is not true
therefore
the ordered pair Q not lie on the circle
case B) 
substitute the value of
in the equation of the circle and then compare the results

------> is true
therefore
the ordered pair R lie on the circle
case C) 
substitute the value of
in the equation of the circle and then compare the results

------> is not true
therefore
the ordered pair S not lie on the circle
case D) 
substitute the value of
in the equation of the circle and then compare the results

------> is not true
therefore
the ordered pair T not lie on the circle
I think the answer is (-6,30) unless I messed up somewhere
The value of x is 1.
The value of y is 4.
Solution:
Given TQRS is a rhombus.
<u>Property of rhombus:
</u>
Diagonals bisect each other.
In diagonal TR
⇒ 3x + 2 = y + 1
⇒ 3x – y = –1 – – – – (1)
In diagonal QS
⇒ x + 3 = y
⇒ x – y = –3 – – – – (2)
Solve (1) and (2) by subtracting
⇒ 3x – y – (x – y) = –1 – (–3)
⇒ 3x – y – x + y = –1 + 3
⇒ 2x = 2
⇒ x = 1
Substitute x = 1 in equation (2), we get
⇒ 1 – y = –3
⇒ –y = –3 – 1
⇒ –y = –4
⇒ y = 4
The value of x is 1.
The value of y is 4.
2 rows of geraniums and 4rows of the other one
Answer:
Step-by-step explanation:
It is blurry sorry man