Use the distributive property to multiply the two sets of parentheses. You should have learned this in Algebra 1.
Answer:
The fourth pair of statement is true.
9∈A, and 9∈B.
Step-by-step explanation:
Given that,
U={x| x is real number}
A={x| x∈ U and x+2>10}
B={x| x∈ U and 2x>10}
If 5∈ A, Then it will be satisfies x+2>10 , but 5+2<10.
Similarly, If 5∈ B, Then it will be satisfies 2x>10 , but 2.5=10.
So, 5∉A, and 5∉B.
If 6∈ A, Then it will be satisfies x+2>10 , but 6+2<10.
Similarly, If 6∈ B, Then it will be satisfies 2x>10 , and 2.6=12>10.
So, 6∉A, and 6∈B.
If 8∈ A, Then it will be satisfies x+2>10 , but 8+2=10.
Similarly, If 8∈ B, Then it will be satisfies 2x>10. 2.8=16>10.
So, 8∉A, and 8∈B.
If 9∈ A, Then it will be satisfies x+2>10 , but 9+2=11>10.
Similarly, If 9∈ B, Then it will be satisfies 2x>10. 2.9=18>10.
So, 9∈A, and 9∈B.
Part A:
The average rate of change refers to a function's slope. Thus, we are going to need to use the slope formula, which is:

and
are points on the function
You can see that we are given the x-values for our interval, but we are not given the y-values, which means that we will need to find them ourselves. Remember that the y-values of functions refers to the outputs of the function, so to find the y-values simply use your given x-value in the function and observe the result:




Now, let's find the slopes for each of the sections of the function:
<u>Section A</u>

<u>Section B</u>

Part B:
In this case, we can find how many times greater the rate of change in Section B is by dividing the slopes together.

It is 25 times greater. This is because
is an exponential growth function, which grows faster and faster as the x-values get higher and higher. This is unlike a linear function which grows or declines at a constant rate.
175m^2
I got the by multiplying 1/2, by the base (14), by the height (25).
1/2 * 14 * 25