1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez1+1=2 ez
Answer:
D
Step-by-step explanation:
1. The domain is all x values for the function.
2. Since the line starts at the x value of 3, it is included and since it goes to the right, it also includes all the values greater than 3.
3. Therefore, x>_3
Given:
The graph of a scatter plot.
To find:
The function that best fits the given points.
Solution:
From the given graph it is clear that the linear function is the best fit for the given points because the points lie on a straight line or near to it.
So, options B and C are incorrect because they represent exponential and quadratic function respectively.
Let as assume the two points on the graph are (0.80,-12.82) and (2,-12.79).
Using this two points, the equation of line is:







It is the approximate function to the function that is in option A.
Therefore, the correct option is A.
Part A-For marigold plants X, a geometric sequence has a general form of:
X = Xo * (1 + r)^n
where r = -15% = -0.15 (negative since it is decreasing)
Xo = the initial amount of marigold plants = 150
X = 150 * (1 – 0.15)^n
X = 150 (0.85)^n