Answer: The particles are moving fast but close together.
Volume of Ammonia(NH₃) = 22.4 L
<h3>Further explanation</h3>
Given
Reaction
3CuO+2NH₃⇒ 3Cu + 3H₂O+ N₂
<em>In the problem, the CuO coefficient should be 3 not 2</em>
M CuO = 80
mass CuO = 120 g
Required
The volume of NH₃
Solution
mol CuO :

From the equation, mol ratio CuO : NH₃ = 3 : 2, so mol NH₃=

Assume at STP(0 °C, 1 atm) ⇒1 mol = 22.4 L, then volume of NH₃=22.4 L
The magnitude of dispersion forces in Br2 is greater than the magnitude of dispersion forces in Cl2.
Atomic radius decreases across the period but increases down the group. As more shells are added to the atom, the repulsion between electrons increases. Across the group, more electrons are added without increase in the number of shell hence atomic radius decreases across the period due to increase in the size of the nuclear charge. Therefore, the atomic radius of Li is larger than that of Be.
Ionization energy is a periodic trend that increases across the period but decreases down the group. Since the outermost electron is further from the nucleus due to screening of inner electrons, ionization energy decreases down the group. Across the period, the size of the nuclear charge increases hence ionization energy increases across the period.
For K, the second electron is removed from an inner shell which requires a very large amount of energy. In Ca, the second electron is removed from the valence shell which requires a lesser amount of energy. Therefore, the second ionization energy of K is greater than the second ionization energy of Ca.
The carbon to carbon bond in C2H4 is a double bond which has a greater bond enthalpy than the single bond in C2H6. As such, the carbon to carbon bond in C2H4 has a greater bond energy than the carbon to carbon bond in C2H6.
The boiling point of Cl2 is lower than the boiling point of Br2 because Br2 is larger than Cl2 hence the magnitude of dispersion forces in Br2 is greater than the magnitude of dispersion forces in Cl2.
Learn more: brainly.com/question/11155928
Answer:
a. ionic, 211.62g/mol
b. molecular, 149g/mol
c. molecular, 342g/mol
Explanation:
Ionic Compound: These are compounds (2 or more elements) where atoms of the element have lost or gained electrons, thus they are ions, thus the name ionic. An easy way to identify ionic compounds is to see if there are any metals. Metals tend to give up their electron to a non-metal. It maybe helpful to familiarize which parts of the periodic table have metals and non-metals.
Molecular Compounds: These are compounds (2 or more elements) that are neutral. An easy way to identify them is that the compound is made up of just non-metals.
Molar Mass is the masses of each individual element in the compound. Refer to the periodic table for the masses and add them up carefully, remember to multiply their mass based on how many molecules there are in the compound, like for a, we can find the mass of NO3, but we need to multiply it by 2 since we have 2 molecules of NO3.
a. Sr(NO3)2
Sr= 87.62
NO3= 14 + (3 x 16)= 62
Sr + 2 (NO3)
87.62 + (2 x 62)= 211.6
b. (NH4)3PO4
NH4= 14 + 4 = 18
PO4= 30.97 + (4 x 16)= 94.9
(NH4 x 3) + PO4
(18 x 3) + 94.9 = 149
c. C12H22O11
(12 x C) + (22 x H) + (11 x O)
(12 x 12) + (22 x 1) + (11 x 16)
144 + 22 + 176= 342
The chemical composition of the magma and the rate at which it cools determine what rock forms. Igneous rocks can cool slowly beneath the surface or rapidly at the surface. These rocks are identified by their composition and texture.
Hope this help XD