<u>Answer:</u> The volume of water required is 398 mL
<u>Explanation:</u>
To calculate the molarity of solution, we use the equation:

We are given:
Mass of solute (manganese (II) nitrate tetrahydrate) = 16 g
Molar mass of manganese (II) nitrate tetrahydrate = 251 g/mol
Molarity of solution = 0.16 M
Putting values in above equation, we get:

Hence, the volume of water required is 398 mL
To determine the mass of the sample in milligrams in this problem, we use the avogadro's number to convert from atoms to moles, relate the moles of element in the sample to the mole present and the molar mass of the sample. We do as follows:
1.552 x 10^22 atoms H ( 1 mol H / 6.022x10^23 atoms H ) ( 1 mol C2H4Cl2 / 4 mol H ) ( 98.96 g C2H4Cl2 / 1 mol C2H4Cl2 ) = 0.625 g C2H4Cl2 = 625 mg <span>C2H4Cl2</span>
Answer: c
Explanation: all the other answers are physical changes
Most of the elements important in biology need eight electrons in their outermost shell in order to be stable, and this rule of thumb is known as the octet rule. Some atoms can be stable with an octet even though their valence shell is the 3n shell, which can hold up to 18 electrons.