Answer:
3.3in
Step-by-step explanation:
Answer:

Step-by-step explanation:
<u>Step 1:-</u>
Given f(x) = 4 x+1 and g(x) =x^2-5

Given



Therefore 
Y = |x² - 3x + 1|
y = x - 1
|x² - 3x + 1| = x - 1
|x² - 3x + 1| = ±1(x - 1)
|x² - 3x + 1| = 1(x - 1) or |x² - 3x + 1| = -1(x - 1)
|x² - 3x + 1| = 1(x) - 1(1) or |x² - 3x + 1| = -1(x) + 1(1)
|x² - 3x + 1| = x - 1 or |x² - 3x + 1| = -x + 1
x² - 3x + 1 = x - 1 or x² - 3x + 1 = -x + 1
- x - x + x + x
x² - 4x + 1 = -1 or x² - 2x + 1 = 1
+ 1 + 1 - 1 - 1
x² - 4x + 1 = 0 or x² - 2x + 0 = 0
x = -(-4) ± √((-4)² - 4(1)(1)) or x = -(-2) ± √((-2)² - 4(1)(0))
2(1) 2(1)
x = 4 ± √(16 - 4) or x = 2 ± √(4 - 0)
2 2
x = 4 ± √(12) or x = 2 ± √(4)
2 2
x = 4 ± 2√(3) or x = 2 ± 2
2 2
x = 2 ± √(3) or x = 1 ± 1
x = 2 + √(3) or x = 2 - √(3) or x = 1 + 1 or x = 1 - 1
x = 2 or x = 0
y = x - 1 or y = x - 1 or y = x - 1 or y = x - 1
y = (2 + √(3)) - 1 or y = (2 - √(3)) - 1 or y = 2 - 1 or y = 0 - 1
y = 2 - 1 + √(3) or y = 2 - 1 - √(3) or y = 1 or y = -1
y = 1 + √(3) or y = 1 - √(3) (x, y) = (2, 1) or (x, y) = (0, -1)
(x, y) = (2 ± √(3), 1 ± √(3))
The solution (0, -1) can be made by one function (y = x - 1) while the solution (2 ± √(3), 1 ± √(3)) can be made by another function (y = |x² - 3x + 1|). So the solution (2, 1) can be made by both functions, making the two solutions equal.
Answer: the interest on the loan is $39.38
Step-by-step explanation:
The formula for determining simple interest is expressed as
I = PRT/100
Where
I represents interest paid on the loan.
P represents the principal or amount taken as loan
R represents interest rate
T represents the duration of the loan in years.
From the information given,
P = $350
R = 4.5%
There are 12 months in a year. Converting 30 months into years, it becomes
30/12 = 2.5. so
T = 2.5 years
Therefore
I = (350 × 4.5 × 2.5)/100
I = $39.38
Answer: We are using a line regression tool to solve the parameters asked in the problem. We can use online tools or that of Excel. According to the tool, the best fit values are
Slope0.3848 ± 0.03956
Y-intercept0.6053 ± 0.6370
X-intercept-1.573
1/Slope2.598
Step-by-step explanation: Best fit lines make sure that the standard deviation at each point is minimum from the best fit line.