Answer:
Step-by-step explanation:
1. x+2y=6 or x=6-2y
3x-2y=2
3(6-2y)-2y=2
18-6y-2y=2
18-8y=2
-8y=-18+2
-8y=-16
y=-16/-8
y=2 ans.
x+2*2=6
x+4=6
x=6-4=2 ans.
Proof:
3*2-2*2=2
6-4=2
2=2
I leave the rest for you to practice with.
3. 4x+y=7
2x+5y=-1
5. 3x+2y=-2
6x-y=6
Solve the system using the elimination method. Show all your steps.
7. -3x+3y=3
3x+y=9 add.
---------------------------------
4y=12
y=12/4
y=3 ans.
3x+3=9
3x=9-3
3x=6
x=6/3
x=2 ans.
Proof:
-3*2+3*3=3
-6+9=3
3=3
I'll leave the rest for practice.
9. -5x+12y=20
x-2y=-6
11. 3x+2y=1
4x+ 6y= 7
Answer:
x = 8/7
Step-by-step explanation:
Step 1: Convert to math
7x - 5 = 3
Step 2: Solve for <em>x</em>
- Add to both sides: 7x = 8
- Divide both sides by 7: x = 8/7
Scatter Plot<span>. ... A </span>graph<span> of plotted points that show the relationship between two sets of data. In this example, each dot represents one person's weight versus their height</span>
We have a sample of 28 data points. The sample mean is 30.0 and the sample standard deviation is 2.40. The confidence level required is 98%. Then, we calculate α by:

The confidence interval for the population mean, given the sample mean μ and the sample standard deviation σ, can be calculated as:
![CI(\mu)=\lbrack x-Z_{1-\frac{\alpha}{2}}\cdot\frac{\sigma}{\sqrt[]{n}},x+Z_{1-\frac{\alpha}{2}}\cdot\frac{\sigma}{\sqrt[]{n}}\rbrack](https://tex.z-dn.net/?f=CI%28%5Cmu%29%3D%5Clbrack%20x-Z_%7B1-%5Cfrac%7B%5Calpha%7D%7B2%7D%7D%5Ccdot%5Cfrac%7B%5Csigma%7D%7B%5Csqrt%5B%5D%7Bn%7D%7D%2Cx%2BZ_%7B1-%5Cfrac%7B%5Calpha%7D%7B2%7D%7D%5Ccdot%5Cfrac%7B%5Csigma%7D%7B%5Csqrt%5B%5D%7Bn%7D%7D%5Crbrack)
Where n is the sample size, and Z is the z-score for 1 - α/2. Using the known values:
![CI(\mu)=\lbrack30.0-Z_{0.99}\cdot\frac{2.40}{\sqrt[]{28}},30.0+Z_{0.99}\cdot\frac{2.40}{\sqrt[]{28}}\rbrack](https://tex.z-dn.net/?f=CI%28%5Cmu%29%3D%5Clbrack30.0-Z_%7B0.99%7D%5Ccdot%5Cfrac%7B2.40%7D%7B%5Csqrt%5B%5D%7B28%7D%7D%2C30.0%2BZ_%7B0.99%7D%5Ccdot%5Cfrac%7B2.40%7D%7B%5Csqrt%5B%5D%7B28%7D%7D%5Crbrack)
Where (from tables):

Finally, the interval at 98% confidence level is: