1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dimulka [17.4K]
4 years ago
10

What is the value of the expression 8m − 2 when m = 4? A. 10 B. 16 C. 24 D. 30

Mathematics
2 answers:
jeka944 years ago
7 0
Salutations!

What is the value of the expression 8m − 2 when m = 4?

This is just <span>substituting values. So, in place of m, you will be entering 4.

8 </span>× 4 - 2 = ?

8 × 4 = 32

32 - 2 = 30.

Thus, your answer is option D.

Hope I helped (:

Have a great day!
Ivan4 years ago
6 0
8m - 2
8(4) - 2
32 - 2

30
You might be interested in
The sum of 3 times a number and -4 is at least twice the number plus 8
icang [17]
3x - 4 > 2x + 8

3x - 2x > 8 - 4

x > 4
5 0
3 years ago
Read 2 more answers
Jose and Enriquetta are doing an opinion survey of undergraduate students regarding immigration policy in the United States. The
alexira [117]

Answer: Population , Sample

Step-by-step explanation:

In statistics, Population can be defined as the overall pool from which a statistical sample is drawn. A population may refer to an entire group of people, objects, events, hotel visits, measurements etc. While a sample is defined as a small part of a population used for statistical analysis, which is intended to show what the whole population is like.

In the case above,the population is the 7000 students in the school while the sample is the 1000 students surveyed.

4 0
3 years ago
From least to greatest 3/5, 7/8, 1/5
RUDIKE [14]
1/5, 3/5, 7/8 is from least to greatest.
5 0
3 years ago
Read 2 more answers
Help with num 1 please.​
KengaRu [80]

Answer:

(i)  \displaystyle y' = (6x - 1)ln(2x + 1) + \frac{2x(3x - 1)}{2x + 1}

(ii)  \displaystyle y' = \frac{2x}{ln(x)} - \frac{x^2 + 2}{x(lnx)^2}

(iii)  \displaystyle y' = \frac{e^x[xln(2x) + 1]}{x}

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹  

Derivative Rule [Product Rule]:                                                                             \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Derivative Rule [Quotient Rule]:                                                                           \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                 \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Exponential Differentiation

Logarithmic Differentiation

Step-by-step explanation:

(i)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = (3x^2 - x)ln(2x + 1)

<u>Step 2: Differentiate</u>

  1. Product Rule:                                                                                                 \displaystyle y' = (3x^2 - x)'ln(2x + 1) + (3x^2 - x)[ln(2x + 1)]'
  2. Basic Power Rule/Logarithmic Differentiation [Chain Rule]:                       \displaystyle y' = (6x - 1)ln(2x + 1) + (3x^2 - x)\frac{1}{2x + 1}(2x + 1)'
  3. Basic Power Rule:                                                                                         \displaystyle y' = (6x - 1)ln(2x + 1) + (3x^2 - x)\frac{2}{2x + 1}
  4. Simplify [Factor]:                                                                                           \displaystyle y' = (6x - 1)ln(2x + 1) + \frac{2x(3x - 1)}{2x + 1}

(ii)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = \frac{x^2 + 2}{lnx}

<u>Step 2: Differentiate</u>

  1. Quotient Rule:                                                                                               \displaystyle y' = \frac{(x^2 + 2)'lnx - (x^2 + 2)(lnx)'}{(lnx)^2}
  2. Basic Power Rule/Logarithmic Differentiation:                                           \displaystyle y' = \frac{2xlnx - (x^2 + 2)\frac{1}{x}}{(lnx)^2}
  3. Rewrite:                                                                                                         \displaystyle y' = \frac{2xlnx}{(lnx)^2} - \frac{(x^2 + 2)\frac{1}{x}}{(lnx)^2}
  4. Simplify:                                                                                                         \displaystyle y' = \frac{2x}{ln(x)} - \frac{x^2 + 2}{x(lnx)^2}

(iii)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = e^xln(2x)

<u>Step 2: Differentiate</u>

  1. Product Rule:                                                                                                 \displaystyle y' = (e^x)'ln(2x) + e^x[ln(2x)]'
  2. Exponential Differentiation/Logarithmic Differentiation [Chain Rule]:       \displaystyle y' = e^xln(2x) + e^x(\frac{1}{2x})(2x)'
  3. Basic Power Rule:                                                                                         \displaystyle y' = e^xln(2x) + e^x(\frac{1}{2x})2
  4. Simplify:                                                                                                         \displaystyle y' = e^xln(2x) + \frac{e^x}{x}
  5. Rewrite:                                                                                                         \displaystyle y' = \frac{xe^xln(2x) + e^x}{x}
  6. Factor:                                                                                                           \displaystyle y' = \frac{e^x[xln(2x) + 1]}{x}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

Book: College Calculus 10e

6 0
3 years ago
2x+4y = 4<br> solve for y
DedPeter [7]

Answer:

y=  −1 /2 x+1

Step-by-step explanation:

Let's solve for y.

2x+4y=4

Step 1: Add -2x to both sides.

2x+4y+−2x=4+−2x

4y=−2x+4

Step 2: Divide both sides by 4.

4y /4  =  −2x+4 /4

y=  −1 /2 x+1

Answer:

y=  −1 /2 x+1

6 0
3 years ago
Other questions:
  • If a cylinder has a volume of 400 m3 and a radius of 4 m, what is its height?
    5·1 answer
  • I don't get # 2 please help and fast
    10·1 answer
  • 1/3 the weight of a bar of gold plus 30 pounds equals the weight of that bar of gold. How much does the bar of gold weigh?​
    6·2 answers
  • Which equation is the inverse of the question
    15·2 answers
  • Suppose you hear a weather forecaster say a front is forming over your area. However, you don’t hear what kind of front it is. W
    15·2 answers
  • Help me pleaseeeee!!!
    9·2 answers
  • Two hundred sixty students were surveyed on whether they prefer apple juice or orange juice. A table of relative frequencies is
    13·2 answers
  • A rectangular prism has a volume of 378 cubic inches the area of the base is 42 square inches what is the height
    5·1 answer
  • 5+4(2 + 4)2
    6·1 answer
  • I don't understand this question?
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!