1/100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000 etc.
Answer: Assuming that you mean 1in:2ft the model house would be 13 inches wide.
Step-by-step explanation: well 1 is half of 2 right? So if you want to get the numbers easier to use then just divide that 26 by 2 and then you get the scale 1in:1ft. From there it is easy, 13 feet of the real house= 13 inches in the model house


- <u>We </u><u>have </u><u>given </u><u>that </u><u>the </u><u>coordinates </u><u>of </u><u>the </u><u>end </u><u>point </u><u>G </u><u>and </u><u>H </u><u>are </u><u>(</u><u> </u><u>-</u><u>6</u><u>,</u><u>5</u><u>)</u><u> </u><u>and </u><u>(</u><u> </u><u>2</u><u>,</u><u> </u><u>-</u><u>7</u><u> </u><u>)</u>

- <u>We </u><u>have </u><u>to </u><u>find </u><u>the </u><u>length </u><u>of </u><u>GH </u>

The coordinates of G = ( -6 , 5 )
The coordinates of H = ( 2 , - 7 )
<u>According </u><u>to </u><u>the </u><u>distance </u><u>formula</u><u>, </u><u> </u><u>we </u><u>get </u><u>:</u><u>-</u><u> </u>

- <u>Here</u><u>, </u><u> </u><u>x1</u><u> </u><u>=</u><u> </u><u>-</u><u>6</u><u> </u><u>,</u><u> </u><u>x2</u><u> </u><u>=</u><u> </u><u>2</u><u> </u><u>and </u><u>y1</u><u> </u><u>=</u><u> </u><u>5</u><u> </u><u>,</u><u> </u><u>y2</u><u> </u><u>=</u><u> </u><u>-</u><u>7</u>
<u>Subsitute </u><u>the </u><u>required </u><u>values </u><u>in </u><u>the </u><u>above </u><u>formula </u>








Answer:
Yes
Step-by-step explanation:
You are adding s^2 to your 128 ft^2. s^2 is a common representation of a square. So you could think of it as adding an area of a square of side "s" to your deck.
So one way of drawing it is to draw a rectangle with area 128 ft^2 and attaching a square to one of its side. The square that is attached has a side lenght of "s."