1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oksi-84 [34.3K]
3 years ago
8

Find the solution of the objective function for problems (a) - (b) below. For each problem,

Mathematics
1 answer:
sergey [27]3 years ago
5 0

Answer:

is that all detail

Step-by-step explanation:

You might be interested in
Which cube is a unit cube?
liq [111]

Answer:

The answer is (C)

Step-by-step explanation:

because unit cube, more formally a cube of side 1, is a cube whose sides are 1 unit long .The volume of a 3-dimensional unit cube is 1 cubic unit, and its total surface area is 6 square units.

7 0
4 years ago
Read 2 more answers
Prove that sinxtanx=1/cosx - cosx
maks197457 [2]

Answer:

See below

Step-by-step explanation:

We want to prove that

\sin(x)\tan(x) = \dfrac{1}{\cos(x)} - \cos(x), \forall x \in\mathbb{R}

Taking the RHS, note

\dfrac{1}{\cos(x)} - \cos(x) = \dfrac{1}{\cos(x)} - \dfrac{\cos(x) \cos(x)}{\cos(x)} = \dfrac{1-\cos^2(x)}{\cos(x)}

Remember that

\sin^2(x) + \cos^2(x) =1 \implies 1- \cos^2(x) =\sin^2(x)

Therefore,

\dfrac{1-\cos^2(x)}{\cos(x)} = \dfrac{\sin^2(x)}{\cos(x)} = \dfrac{\sin(x)\sin(x)}{\cos(x)}

Once

\dfrac{\sin(x)}{\cos(x)} = \tan(x)

Then,

\dfrac{\sin(x)\sin(x)}{\cos(x)} = \sin(x)\tan(x)

Hence, it is proved

5 0
3 years ago
If there are 37 figures and there are six people how many will each person get
Elis [28]

Answer:

It depends.

Step-by-step explanation:

If we're able to brake the figures, then each person will get six and one sixth of a figure

37 \div 6 = 6 \frac{1}{6}

But if we can't break them, then each person will get six figures with one remaining ungiven.

37 \div 6 = 6 \: (1)

5 0
4 years ago
How many times can can 93 go into 784?
lyudmila [28]
784/ 93 = 8.43010752688
93 * <span>8.43010752688 = 784</span>

8 0
3 years ago
Read 2 more answers
Solve the problem. Find the amount of money in an account after 12 years if $4700 is deposited at 5% annual interest compounded
Dmitrij [34]

Answer:

The correct answer is $8532.17

Step-by-step explanation:

The formula for calculating investments with compound interests is as follows:

(1+\frac{R}{t})^{tn}*P

Where:

R is the annual interest rate,

t is the number of times the investment is to be compounded in a year,

n is the number of years,

P is the principal amount invested.

Replacing in the formula with the given values you have:

(1+\frac{0.05}{4})^{4*12}*4700 = 8532.1678

3 0
3 years ago
Other questions:
  • Can you please factor this x^8-7x^4+12
    9·1 answer
  • During the summer, Bethany mows lawns and Grant is a waiter at a coffee shop. To show their earnings, Bethany makes a graph and
    7·2 answers
  • How does the graph of g(x)=⌈x⌉+0.5 differ from the graph of f(x)=⌈x⌉?
    14·1 answer
  • I cannot figure this out. Anyone?<br><br> 5(-3x - 2) - (x - 3) = -4(4x + 5) + 13
    14·1 answer
  • How many solutions does y=(2-7)^2
    12·1 answer
  • Please answer this correctly
    12·2 answers
  • Which is C= 100w/l solved for w?<br> A.)W=100CL<br> B.)W= LC/100<br> C.)W= 100C/L<br> D.)W= 100/LC
    15·1 answer
  • For f(x) = 3x+ 1 and g(x) = x2 - 6, find (f+g)(x).
    13·2 answers
  • the camdens drove 116 miles on 5 gallons of gas. at this rate, how many miles can they drive on 7 gallons of gas
    5·1 answer
  • Use the drawing tool(s) to form the correct answer on the provided number line.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!