The same number <span>chromosomes are there in a maize egg cell nucleus as compared to a maize pollen cell nucleus</span>
Answer:
epiphyses (Just typing more so brainly lets me post this)
Answer:
The horses developed an oxygen debt when they exercise because they suffered from Exercise-Induced Pulmonary Hemorrhage (EIPH).
Explanation:
A temporary shortage of oxygen in the body tissues during physical exertion such as exercise or a sudden burst of activity is referred to as oxygen shortage.
Horses (compared to humans) are uniquely designed to experience little or none of this.
When the body takes up oxygen, it reacts with glucose to produce energy. This is called Aerobic respiration.
There is also another procedure that the body uses to produce energy. This occurs when glucose is broken down in the cells. After this happens, lactic acid is created but cannot be stored in the body and must be expelled.
This interval when energy is produced without the presence of oxygen is called "oxygen debt".
When a horse is fit, its breathing quickly returns to normal. The longer the time taken for the breathing to return to normal, the less fit the horse is.
One of the factors that can reduce the fitness of a horse is the Exercise-Induced Pulmonary Hemorrhage (EIPH).
This occurs when blood vessle in the lung ruptures causing blood to bleed into the airways. So blood occupies space where oxygen should have. This reduced the amount of oxygen delivered to the blood stream. Hence the oxygen debt takes longer to be repaid.
Cheers
Answer:
the basic functions performed by living organisms for their survival and body maintenence are called life process.
Explanation:
life process require energy which is provided by nutrition .
basic life processes are : nutrition , respiration , transportation , excretion .
The suppression of glycolysis is responsible for a large portion of the control of gluconeogenesis.
Discussion about the statement:
The cytosol is the site of all glycolysis and gluconeogenesis processes. The rate at which glucose is produced in the body is inversely related to the intake of carbohydrates. The suppression of glycolysis is responsible for a large portion of the control of gluconeogenesis.
Fructose 2,6-bisphosphate is an intermediate that plays a crucial role in controlling both glycolysis and gluconeogenesis. This metabolite's presence can promote glycolysis and prevent gluconeogenesis.
Control of Gluconeogenesis and Glycolysis
- At various crucial stages of glycolysis and gluconeogenesis, metabolic control takes place. The catalysts that accelerate each of these stages can be activated or inhibited by outside forces, for example, the quantity of a molecule that comes after. The conversion of glucose and ATP into glucose 6-phosphate is the first controlled step in glycolysis. Keep in mind that hexokinase catalyzes this process.
- High levels of blood glucose, AMP, and low levels of cellular ATP all trigger the activation of hexokinase. In other words, the glycolysis process is enhanced when blood glucose levels are high. Whenever cellular ATP levels are low and AMP levels are high, glycolysis is also increased. Both of these instances show that the cell is short on energy and may be directly influenced to create additional energy.
Learn more about glycolysis here:
brainly.com/question/14076989
#SPJ4