The codon is a set of 3 nucleotides that can be read to convey a message in your DNA. It can be a code saying to "start" the process of protein synthesis, or "stop" it, or to encode for an amino acid - the building blocks of proteins.
<span>The DNA is read, and proteins are made by DNA Polymerase (simple version here, it is more complicated, but this is the gist of it) travelling down the DNA. As it travels, it reads the nucleotides and builds a chain of amino acids, that corresponds to the information gleaned from the DNA. </span>
<span>So, the codon is only on one side of the DNA, and there are 2 sides. In order to be able to keep the DNA safe, and package it well (and loads of other reasons ) there is a complimentary strand. The nucleotides that make up DNA are A, T, C, and G. A links to T and C to G, and vice versa. </span>
So if your DNA strand's codons read "AAG AGG TCA"
Then the complimentary strand will read "TTC TCC AGT" the three codons on the complimentary strand ARE THE ANTICODONS of the codons on the strand being read (aka "expressed").
<span>So a codon and an anti codon are made of the same things, it just is a matter of which is being actively expressed. Now, this gets insanely complicated when you learn more about reading frames! Not only are there those codons, but if you shift and start reading the "code" either one nucleotide earlier or later, it completely changes the message.</span>
Answer:
b. False
Explanation:
These components are not sufficient to successfully perform a PCR reaction. Deoxynucleoside triphosphates (dATP, dGTP, dCTP, dTTP) are missing so that the PCR reaction can occur perfectly.
The PCR technique allows a specific fragment of the DNA molecule to be amplified thousands of times in just a few hours. This technique revolutionized research in molecular biology because it had taken a long time for DNA amplification. From PCR it is possible to obtain enough copies of a part of DNA to detect and analyze the sequence that is the target of the study.
For a PCR reaction to be performed a solution with some components must be prepared. These components are:
- Magnesium chloride buffer (to optimize reaction and act as a cofactor for polymerase)
- Forward and reverse primers (to customize the start of the enzyme reaction)
- DNA polymerase (Enzyme required for replication of desired DNA region.)
- DNA Template (the DNA to be copied)
- PCR-grade water
- Deoxynucleoside triphosphates: dATP, dGTP, dCTP, dTTP (act as bricks in the construction of DNA molecules).
Not to be concerned as long as the diet as a whole provides average amounts
Cell-tissue-organ-organ system-organism