Answer:Example1: 2 and 2 1/2
The mark that is closest to the right end of the glue stick is for 2 1/2 inches.
Answer on last part is 2 1/2 inches
Example 2: 1 2/4 and 1 3/4
The mark that is closest to the right end of the paper clip is for 1 3/4
Answer on last part is 1 3/4
Step-by-step explanation: the ruler is split into halves and fourths between the whole numbers the longer lines are halves shorter are fourths.
Long division: (x³ + 2) ÷ (x + 1)
<u> </u><u>x² – x + 1 </u>
x³ + 0x² + 0x + 2 | x + 1
<u>– x³ – x²</u> ⋮ ⋮
– x² + 0x ⋮
<u>+ x² + x</u><span> ⋮</span>
+ x + 2
<span> </span> <u>– x – 1</u>
+ 1
Quotient: Q(x) = x² – x – 1;
Remainder: R(x) = + 1.
I hope this helps. =)
Answer:
c...
Step-by-step explanation:
Answer:
(X) 0 1 2 3 4
P(X) 0.17 0.23 0.27 0.24 0.09
F(x) 0.17 0.04 0.65 0.91 1
Step-by-step explanation:
Given that;
(X) 0 1 2 3 4
P(X) 0.17 0.23 0.27 0.24 0.09
cumulative distribution function can be calculated by; be cumulatively up the value of p(x) with the values before it;
so
x F(x)
0 P(X = 0) = 0.17
1 P(X = 0) + P(X = 1) = 0.17 + 0.23 = 0.4
2 P(X = 0) + P(X = 1) + P(X = 2) = 0.17 + 0.23 + 0.27 = 0.65
3 P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) = 0.17 + 0.23 + 0.27 + 0.24 = 0.91
4 P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) = 0.17 + 0.23 + 0.27 + 0.24 + 0.09 = 1
Therefore, cumulative distribution function f(x) is;
(X) 0 1 2 3 4
P(X) 0.17 0.23 0.27 0.24 0.09
F(x) 0.17 0.04 0.65 0.91 1