Answer:
The six-row combin harvests 285 bushels of corn per hour.
Explanation:
The rule of three or is a way of solving problems of proportionality between three known values and an unknown value, establishing a relationship of proportionality between all of them. That is, what is intended with it is to find the fourth term of a proportion knowing the other three.
If the relationship between the magnitudes is direct, you can apply the following formula:
a ⇒ b
c ⇒ x
So: 
In this case you can apply it in the following way: if 56 pounds is equal to 1 bushel, 266 pounds to how many bushels is it?

x=4.75
This is, a six row combin harvests 4.75 bushels of corn per min.
So, being 1 hour equal to 60 minutes, you can apply the following rule of three: if in 1 minute a six-row harvester harvests , in 60 minutes how many bushels of corn it harvests?

bushels of corn= 285
<u><em>
The six-row combin harvests 285 bushels of corn per hour.</em></u>
Answer:
ΔrxnH = -580.5 kJ
Explanation:
To solve this question we are going to help ourselves with Hess´s law.
Basically the strategy here is to work in an algebraic way with the three first reactions so as to reprduce the desired equation when we add them together, paying particular attention to place the reactants and products in the order that they are in the desired equation.
Notice that in the 3rd reaction we have 2 mol Na₂O (s) which is a reactant but with a coefficient of one, so we will multiply this equation by 1/2-
The 2nd equation has Na₂SO₄ as a reactant and it is a product in our required equation, therefore we will reverse the 2nd . Note the coefficient is 1 so we do not need to multiply.
This leads to the first equation and since we need to cancel 2 NaOH, we will nedd to multiply by 2 the first one.
Taking 1/2 eq 3 + (-) eq 2 + 2 eq 1 should do it.
Na₂O (s) + H₂ (g) ⇒ 2 Na (s) + H₂O(l) ΔrxnHº = 259 / 2 kJ 1/2 eq3
+ 2NaOH(s) + SO₃(g) ⇒ Na₂SO₄ (s) + H₂O (l) ΔrxnHº = -418 kJ - eq 2
+ 2Na (s) + 2 H₂O (l) ⇒ 2 NaOH (s) + H₂ (g) ΔrxnHº = -146 x 2 2 eq 1
<u> </u>
Na₂O (s) + SO₃ (g) ⇒ Na₂SO₄ (s) ΔrxnHº = 259/2 + (-418) + (-146) x 2 kJ
ΔrxnH = -580.5 kJ
If i had to answer i would choose a hope this helps
If the bonds are held together tightly, as an ionic bond or even a covalent bond, there will need to be a strong force to separate those bonds. This would by why their would be a high melting point. Another reason would be re-activity. <span />
Answer:
When we increase the temperature of one of the reactants in a chemical reaction, this increases the particles kinetic energy, making them move much faster than they were before. This also increases the chance of a more successful collision and the rate of reaction.
Explanation:
Your Welcome