Answer:
In this phenomenon we talk about ideal gases, that is why in these equations the constant is the number of moles and the constant R, which has a value of 0.082
Explanation:
The complete equation would have to be P x V = n x R x T
where n is the number of moles, and if it is not clarified it is because they remain constant, as the question was worded.
On the other hand, the symbol R refers to the ideal gas constant, which declares that a gas behaves like an ideal gas during the reaction, and its value will always be the same, which is why it is called a constant. The value of R = 0.082.
The ideal gas model assumes that the volume of the molecule is zero and the particles do not interact with each other. Most real gases approach this constant within two significant figures, under pressure and temperature conditions sufficiently far from the liquefaction or sublimation point. The real gas equations of state are, in many cases, corrections to the previous one.
The universal constant of ideal gases is not a fundamental constant (therefore, choosing the temperature scale appropriately and using the number of particles, we can have R = 1, although this system of units is not very practical)
Answer:
V₁ = 96.2 mL
Explanation:
Given data:
Initial volume of NH₄OH required = ?
Initial molarity = 15.6 M
Final molarity = 3.00 M
Final volume = 500.0 mL
Solution:
Formula:
M₁V₁ = M₂V₂
M₁ = Initial molarity
V₁ = Initial volume of NH₄OH
M₂ =Final molarity
V₂ = Final volume
Now we will put the values.
15.6 M ×V₁ = 3.00 M×500.0 mL
15.6 M ×V₁ = 1500 M.mL
V₁ = 1500 M.mL /15.6 M
V₁ = 96.2 mL
Answer: about 1,705,536 hrs
24 hrs = 1 day
189 hrs = 1 week
756 = 1 month
9072 = 1 yr
1,705,536 = 188 yrs
Explanation:
Trust Milky. Milky smart