1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Daniel [21]
3 years ago
12

I need to show how to find these solutions 1/4 and 3/4 by completing the square!

Mathematics
2 answers:
Arlecino [84]3 years ago
8 0

Answer:

See explanation, and ask for more details if unclear!

Step-by-step explanation:

The perfect square of this equation is x^2-x+\frac{1}{4}, since the square would be (x-\frac{1}{2})^2. 1/4=4/16, meaning that you can set up the equation in the following way:

(x^2-x+\frac{1}{4})-\frac{1}{16}=0

(x-\frac{1}{2})^2=\frac{1}{16}

Take the square root of both sides:

x-\frac{1}{2}=\pm \frac{1}{4}

Add 1/2 to both sides:

x=\frac{1}{2}\pm \frac{1}{4}=\frac{3}{4}, \frac{1}{4}. Hope this helps!

frosja888 [35]3 years ago
7 0

Answer:

see below

Step-by-step explanation:

x^2 - x + 3/16 = 0

Subtract 3/16 from each side

x^2 - x + 3/16 - 3/16 =  -3/16

x^2 -x = -3/16

Take the coefficient of x

-1

Divide by 2

-1/2   call this a

Square it

(-1/2)^2 = 1/4

Add it to each side

x^2 - x +1/4 =- 3/16+1/4

Changing to the "square"

( x +a)^2 =  - 3/16+1/4

getting a common denominator

( x -1/2) ^2 = -3/16+ 4/16

 ( x -1/2) ^2 =1/16

Take the square root of each side

sqrt(  ( x -1/2) ^2)  = ± sqrt(1/16)

x -1/2 = ± 1/4

Add 1/2 to each side

x -1/2 + 1/2 = 1/2 ± 1/4

x = 1/2 ± 1/4

Separate into 2 equations

x = 1/2 + 1/4                 x = 1/2 - 1/4

    2/4 +1/4                          2/4 -1/4

        3/4                                    1/4

You might be interested in
Which number would make the statement true? (2 points)
alexandr402 [8]

Answer:

0.253

Step-by-step explanation:

since it is greater than 0.243

5 0
2 years ago
Read 2 more answers
Find a particular solution to y" - y + y = 2 sin(3x)
leonid [27]

Answer with explanation:

The given differential equation is

y" -y'+y=2 sin 3x------(1)

Let, y'=z

y"=z'

\frac{dy}{dx}=z\\\\d y=zdx\\\\y=z x

Substituting the value of , y, y' and y" in equation (1)

z'-z+zx=2 sin 3 x

z'+z(x-1)=2 sin 3 x-----------(1)

This is a type of linear differential equation.

Integrating factor

     =e^{\int (x-1) dx}\\\\=e^{\frac{x^2}{2}-x}

Multiplying both sides of equation (1) by integrating factor and integrating we get

\rightarrow z\times e^{\frac{x^2}{2}-x}=\int 2 sin 3 x \times e^{\frac{x^2}{2}-x} dx=I

I=\frac{-2\cos 3x e^{\fra{x^2}{2}-x}}{3}+\int\frac{2x\cos 3x e^{\fra{x^2}{2}-x}}{3} dx -\int \frac{2\cos 3x e^{\fra{x^2}{2}-x}}{3} dx\\\\I=\frac{-2\cos 3x e^{\fra{x^2}{2}-x}}{3}+\int\frac{2x\cos 3x e^{\fra{x^2}{2}-x}}{3} dx-\frac{2I}{3}\\\\\frac{5I}{3}=\frac{-2\cos 3x e^{\fra{x^2}{2}-x}}{3}+\int\frac{2x\cos 3x e^{\fra{x^2}{2}-x}}{3} dx\\\\I=\frac{-2\cos 3x e^{\fra{x^2}{2}-x}}{5}+\int\frac{2x\cos 3x e^{\fra{x^2}{2}-x}}{5} dx

8 0
3 years ago
An instructor who taught two sections of Math 161A, the first with 20 students and the second with 30 students, gave a midterm e
uranmaximum [27]

Answer:

<em>The answers are for option (a) 0.2070  (b)0.3798  (c) 0.3938 </em>

Step-by-step explanation:

<em>Given:</em>

<em>Here Section 1 students = 20 </em>

<em> Section 2 students = 30 </em>

<em> Here there are 15 graded exam papers. </em>

<em> (a )Here Pr(10 are from second section) = ²⁰C₅ * ³⁰C₁₀/⁵⁰C₁₅= 0.2070 </em>

<em> (b) Here if x is the number of students copies of section 2 out of 15 exam papers. </em>

<em>  here the distribution is hyper-geometric one, where N = 50, K = 30 ; n = 15 </em>

<em>Then, </em>

<em> Pr( x ≥ 10 ; 15; 30 ; 50) = 0.3798 </em>

<em> (c) Here we have to find that at least 10 are from the same section that means if x ≥ 10 (at least 10 from section B) or x ≤ 5 (at least 10 from section 1) </em>

<em> so, </em>

<em> Pr(at least 10 of these are from the same section) = Pr(x ≤ 5 or x ≥ 10 ; 15 ; 30 ; 50) = Pr(x ≤ 5 ; 15 ; 30 ; 50) + Pr(x ≥ 10 ; 15 ; 30 ; 50) = 0.0140 + 0.3798 = 0.3938 </em>

<em> Note : Here the given distribution is Hyper-geometric distribution </em>

<em> where f(x) = kCₓ)(N-K)C(n-x)/ NCK in that way all these above values can be calculated.</em>

7 0
3 years ago
Which represents the reflection of f(x)=sqrt x over the y axis
zloy xaker [14]

reflection of f(x)=\sqrt{x} over the y axis we get g(x)=\sqrt{-x}

Step-by-step explanation:

We need to find the reflection of f(x)=sqrt x over the y axis

So, reflection over y- axis

If the function f(x) is transformed over y-axis then the new function g(x) will be g(x)= f(-x)

So, finding reflection of f(x)=\sqrt{x} over the y axis we get:

g(x)=\sqrt{-x}

So, reflection of f(x)=\sqrt{x} over the y axis we get g(x)=\sqrt{-x}

Keywords: Transformations

Learn more about Transformations at:

  • brainly.com/question/2415963
  • brainly.com/question/5563823
  • brainly.com/question/9381523

#learnwithBrainly

6 0
3 years ago
(10 points) Consider the initial value problem y′+3y=9t,y(0)=7. Take the Laplace transform of both sides of the given differenti
Rashid [163]

Answer:

The solution

Y (s) = 9( -1 +3 t + e^{-3 t} ) + 7 e ^{-3 t}

Step-by-step explanation:

<u><em>Explanation</em></u>:-

Consider the initial value problem y′+3 y=9 t,y(0)=7

<em>Step(i)</em>:-

Given differential problem

                           y′+3 y=9 t

<em>Take the Laplace transform of both sides of the differential equation</em>

                L( y′+3 y) = L(9 t)

 <em>Using Formula Transform of derivatives</em>

<em>                 L(y¹(t)) = s y⁻(s)-y(0)</em>

  <em>  By using Laplace transform formula</em>

<em>               </em>L(t) = \frac{1}{S^{2} }<em> </em>

<em>Step(ii):-</em>

Given

             L( y′(t)) + 3 L (y(t)) = 9 L( t)

            s y^{-} (s) - y(0) +  3y^{-}(s) = \frac{9}{s^{2} }

            s y^{-} (s) - 7 +  3y^{-}(s) = \frac{9}{s^{2} }

Taking common y⁻(s) and simplification, we get

             ( s +  3)y^{-}(s) = \frac{9}{s^{2} }+7

             y^{-}(s) = \frac{9}{s^{2} (s+3}+\frac{7}{s+3}

<em>Step(iii</em>):-

<em>By using partial fractions , we get</em>

\frac{9}{s^{2} (s+3} = \frac{A}{s} + \frac{B}{s^{2} } + \frac{C}{s+3}

  \frac{9}{s^{2} (s+3} =  \frac{As(s+3)+B(s+3)+Cs^{2} }{s^{2} (s+3)}

 On simplification we get

  9 = A s(s+3) +B(s+3) +C(s²) ...(i)

 Put s =0 in equation(i)

   9 = B(0+3)

 <em>  B = 9/3 = 3</em>

  Put s = -3 in equation(i)

  9 = C(-3)²

  <em>C = 1</em>

 Given Equation  9 = A s(s+3) +B(s+3) +C(s²) ...(i)

Comparing 'S²' coefficient on both sides, we get

  9 = A s²+3 A s +B(s)+3 B +C(s²)

 <em> 0 = A + C</em>

<em>put C=1 , becomes A = -1</em>

\frac{9}{s^{2} (s+3} = \frac{-1}{s} + \frac{3}{s^{2} } + \frac{1}{s+3}

<u><em>Step(iv):-</em></u>

y^{-}(s) = \frac{9}{s^{2} (s+3}+\frac{7}{s+3}

y^{-}(s)  =9( \frac{-1}{s} + \frac{3}{s^{2} } + \frac{1}{s+3}) + \frac{7}{s+3}

Applying inverse Laplace transform on both sides

L^{-1} (y^{-}(s) ) =L^{-1} (9( \frac{-1}{s}) + L^{-1} (\frac{3}{s^{2} }) + L^{-1} (\frac{1}{s+3}) )+ L^{-1} (\frac{7}{s+3})

<em>By using inverse Laplace transform</em>

<em></em>L^{-1} (\frac{1}{s} ) =1<em></em>

L^{-1} (\frac{1}{s^{2} } ) = \frac{t}{1!}

L^{-1} (\frac{1}{s+a} ) =e^{-at}

<u><em>Final answer</em></u>:-

<em>Now the solution , we get</em>

Y (s) = 9( -1 +3 t + e^{-3 t} ) + 7 e ^{-3t}

           

           

5 0
3 years ago
Other questions:
  • Element X decays radioactively with a half-life of 14 minutes if there are 680 grams of element X how long to the nearest 10th o
    10·1 answer
  • Which choice is equivalent to the product below 14 • 10
    9·1 answer
  • Simplify (-2x)^4<br> a.) -16x^4<br> b.) -8x^4<br> c.) -2x^4<br> d.) 8x^4<br> e.) 16x^4
    10·1 answer
  • Suppose a population of honey bees in Ephraim, UT has an initial population of 2300 and 12 years later the population reaches 13
    10·1 answer
  • The weights of adobe bricks used for construction are normally distributed with a mean of 3 pounds and a standard deviation of 0
    13·1 answer
  • Please help me 10 points i just joined today ;)
    8·1 answer
  • Find the measure of c
    10·1 answer
  • Awnser this for braainliest pls
    15·2 answers
  • Find the earnings rounded to the nearest cent <br>sales: $984 <br>commission: 10%​
    10·1 answer
  • For what value of x is line m parallel to line n?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!