Answer:
hi
Step-by-step explanation:
x=-3
The answer would be (3,-4) This is because if you replace the variables with the numbers and solve the equation it will come out 0=0
So, lets solve.
y+4=-5(x-3)
-4+4=-5(3-3)
0=-5x0
0=0
So therefore the correct answer will be (3,-4)
Hope this helped
Answer:
3 hours
Step-by-step explanation:
In an hour there are 60 minutes to find the unit rate of problems per minute you divide 60/24 and get 2.5 multiply 2.5 by 72 get 180 in minutes that is 3 hours
M<J = m<N ( alternate angles)
m<K = m<M ( alternate angles)
so the third angles must also be equal ( total 180 degrees in each triangle)
Therefor the triangles are similar
For this case we must simplify the following expression:
![\sqrt [3] {\frac {12x ^ 2} {16y}}](https://tex.z-dn.net/?f=%5Csqrt%20%5B3%5D%20%7B%5Cfrac%20%7B12x%20%5E%202%7D%20%7B16y%7D%7D)
We rewrite the expression as:
![\sqrt[3]{\frac{4(3x^2)}{4(4y)}}=\\\sqrt[3]{\frac{4(3x^2)}{4(4y)}}=\\\frac{\sqrt[3]{3x^2}}{\sqrt[3]{4y}}=](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B%5Cfrac%7B4%283x%5E2%29%7D%7B4%284y%29%7D%7D%3D%5C%5C%5Csqrt%5B3%5D%7B%5Cfrac%7B4%283x%5E2%29%7D%7B4%284y%29%7D%7D%3D%5C%5C%5Cfrac%7B%5Csqrt%5B3%5D%7B3x%5E2%7D%7D%7B%5Csqrt%5B3%5D%7B4y%7D%7D%3D)
We multiply the numerator and denominator by:
![(\sqrt[3]{4y})^2:\\\frac{\sqrt[3]{3x^2}*(\sqrt[3]{4y})^2}{\sqrt[3]{4y}*(\sqrt[3]{4y})^2}=](https://tex.z-dn.net/?f=%28%5Csqrt%5B3%5D%7B4y%7D%29%5E2%3A%5C%5C%5Cfrac%7B%5Csqrt%5B3%5D%7B3x%5E2%7D%2A%28%5Csqrt%5B3%5D%7B4y%7D%29%5E2%7D%7B%5Csqrt%5B3%5D%7B4y%7D%2A%28%5Csqrt%5B3%5D%7B4y%7D%29%5E2%7D%3D)
We use the rule of power
in the denominator:
![\frac{\sqrt[3]{3x^2}*(\sqrt[3]{4y})^2}{(\sqrt[3]{4y})^3}=\\\frac{\sqrt[3]{3x^2}*(\sqrt[3]{4y})^2}{4y}=](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B3x%5E2%7D%2A%28%5Csqrt%5B3%5D%7B4y%7D%29%5E2%7D%7B%28%5Csqrt%5B3%5D%7B4y%7D%29%5E3%7D%3D%5C%5C%5Cfrac%7B%5Csqrt%5B3%5D%7B3x%5E2%7D%2A%28%5Csqrt%5B3%5D%7B4y%7D%29%5E2%7D%7B4y%7D%3D)
Move the exponent within the radical:
![\frac{\sqrt[3]{3x^2}*(\sqrt[3]{16y^2}}{4y}=\\\frac{\sqrt[3]{3x^2}*(\sqrt[3]{2^3*(2y^2)}}{4y}=](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B3x%5E2%7D%2A%28%5Csqrt%5B3%5D%7B16y%5E2%7D%7D%7B4y%7D%3D%5C%5C%5Cfrac%7B%5Csqrt%5B3%5D%7B3x%5E2%7D%2A%28%5Csqrt%5B3%5D%7B2%5E3%2A%282y%5E2%29%7D%7D%7B4y%7D%3D)
![\frac{2\sqrt[3]{3x^2}*(\sqrt[3]{(2y^2)}}{4y}=\\\frac{2\sqrt[3]{6x^2*y^2}}{4y}=](https://tex.z-dn.net/?f=%5Cfrac%7B2%5Csqrt%5B3%5D%7B3x%5E2%7D%2A%28%5Csqrt%5B3%5D%7B%282y%5E2%29%7D%7D%7B4y%7D%3D%5C%5C%5Cfrac%7B2%5Csqrt%5B3%5D%7B6x%5E2%2Ay%5E2%7D%7D%7B4y%7D%3D)
![\frac{\sqrt[3]{6x^2*y^2}}{2y}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B6x%5E2%2Ay%5E2%7D%7D%7B2y%7D)
Answer:
![\frac{\sqrt[3]{6x^2*y^2}}{2y}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B6x%5E2%2Ay%5E2%7D%7D%7B2y%7D)