233 1/3
you start with .3x = 70, as this is the sentence given, solving for x.
divide both sides by .3, and you get x
Angle 1 is congruent to angles 3, 5, and/or 7
Angle 2 is congruent to angles 4, 6, and/or 8
Angle 5 is congruent to angles 7, 3 and/or 1
Angle 6 is congruent to angles 8, 4, and/or 2
Any of these answers could work for the blanks.
Angles 1 and 3, 2 and 4, 5 and 7, and angles 6 and 8 are congruent because they are vertical angles. They have the same vertex. Not all of these are congruent to each other if this doesn’t make sense. It’s only 1 is congruent to 3, 2 congruent to 4, etc.
Then you have your corresponding angles. These are ones like angles 2 and 6, then 1 and 5. You can also have 8 and 4, or 7 and 3 as corresponding angles
Transversal angles are different. This would be like angles 3 and 4, or 1 and 2. They are not always congruent. The only time they will be congruent is if they are both 90°. Transversal angles are essentially supplementary angles on the transversal line (the line that intersects through the set of parallel lines)
Answer:
2.38
Step-by-step explanation:
subtract 4.9 on both sides
Answer:
Proved,
P(A∪B)=0.72
Step-by-step explanation:
Sue travels by bus or walks when she visits the shops.
Probability( catch the bus to the shop ), P(A) = 0.4
Probability( catch the bus from the shop ), P(B) = 0.7
Both A and B are independent events.
Therefore,
P(A∩B) = 0.4×0.7
= 0.28
Probability Sue walks one way = 1 - P(A∩B)
= 1 - 0.28
= 0.72
Hence, the probability that Sue walks at one way is 0.72
Answer:
cot(θ°) = 2000 radians
Step-by-step explanation:
Data provided in the question:
The value of tan(θ°) = −0.0005
To solve:
cot(θ°)
Now,
we know the relation between cot and tan function as:
cot(θ°) = 
therefore on substituting the value of theta in the above relation, we can find the value of cot(θ°)
Thus,
cot(θ°) = 
or
cot(θ°) = 2000