Answer:
B. label b
Explanation:
po ang answer itry my best
Answer:
b
Explanation:
Genetic Organization of Prokaryotes Aids Fast Generation Times. Compared to eukaryotes, prokaryotes usually have much smaller genomes. On average, a eukaryotic cell has 1000 times more DNA than a prokaryote. This means that less DNA must be replicated (copied) with each cell division in prokaryotes
theres a video on Y O U T U B E helped me ace the health class a couple year ago
Answer:
1. coevolution
2. abiogenesis
3. Endosymbiont Theory
4. It's estimated that over 99 percent of the species that have existed on Earth at some point in time are extinct today.
5. Coevolution implies that the evolution of one species is dependent on and works in relation to the evolution of another species. This may cause positive or negative impacts and could be beneficial to both organisms or only to one.
6. This theory states that the first building block of life that allowed for reproduction of organisms was the development of self-replicating RNA. This hasn't been able to be fully demonstrated in any science experiment but is based on the idea that there are RNAs that can catalyze biochemical reactions on their own without proteins.
7. This process points to the development of structures through the envelopment of smaller cells that perform specific functions. This is how eukaryotic cells evolved from prokaryotic cells.
8. This experiment was important because it showed that, in the right primordial soup, organic compounds could develop from inorganic compounds.
Explanation:
penn foster
Answer:
Advanced forms of life existed on earth at least 3.55 billion years ago. In rocks of that age, fossilized imprints have been found of bacteria that look uncannily like cyanobacteria, the most highly evolved photosynthetic organisms present in the world today. Carbon deposits enriched in the lighter carbon-12 isotope over the heavier carbon-13 isotope-a sign of biological carbon assimilation-attest to an even older age. On the other hand, it is believed that our young planet, still in the throes of volcanic eruptions and battered by falling comets and asteroids, remained inhospitable to life for about half a billion years after its birth, together with the rest of the solar system, some 4.55 billion years ago. This leaves a window of perhaps 200-300 million years for the appearance of life on earth.
divine interventionThis duration was once considered too short for the emergence of something as complex as a living cell. Hence suggestions were made that germs of life may have come to earth from outer space with cometary dust or even, as proposed by Francis Crick of DNA double-helix fame, on a spaceship sent out by some distant civilization. No evidence in support of these proposals has yet been obtained. Meanwhile the reason for making them has largely disappeared. It is now generally agreed that if life arose spontaneously by natural processes-a necessary assumption if we wish to remain within the realm of science-it must have arisen fairly quickly, more in a matter of millennia or centuries, perhaps even less, than in millions of years. Even if life came from elsewhere, we would still have to account for its first development. Thus we might as well assume that life started on earth.
How this momentous event happened is still highly conjectural, though no longer purely speculative. The clues come from the earth, from outer space, from laboratory experiments, and, especially, from life itself. The history of life on earth is written in the cells and molecules of existing organisms. Thanks to the advances of cell biology, biochemistry and molecular biology, scientists are becoming increasingly adept at reading the text.
An important rule in this exercise is to reconstruct the earliest events in life's history without assuming they proceeded with the benefit of foresight. Every step must be accounted for in terms of antecedent and concomitant events. Each must stand on its own and cannot be viewed as a preparation for things to come. Any hint of teleology must be avoided.