Answer:
See attachment and explanation.
Explanation:
- The following question can be solved better with the help of a MATLAB program as follows. The code is given in the attachment.
- The plot of the graph is given in attachment.
- The code covers the entire spectrum of the poly-tropic range ( 1.2 - 1.6 ) and 20 steps ( cases ) have been plotted and compared in the attached plot.
These parts are commonly called carburetor emulsion tubes. These tubes maintain the air-fuel ratio at different speeds.
The carburetor is a device of the combustion engine power supply system that mixes fuel and air in order to facilitate internal combustion.
The carburetor emulsion tubes are tubes that maintain the air-fuel ratio at different velocities.
These tubes (carburetor emulsion tubes) are small brass cylinders where the metering needle slides into them.
Learn more about carburetors here:
brainly.com/question/4237015
Answer:
hello your question is incomplete attached below is the complete question
answer : attached below
Explanation:
let ; x(t) be a real value signal for x ( jw ) = 0 , |w| > 200
g(t) = x ( t ) sin ( 2000 

next we apply Fourier transform
attached below is the remaining part of the solution
Answer:
A) About
newtons
B) 76.518 newtons
C) 111.834 newtons
Explanation:
A)
, where G is the universal gravitational constant, M 1 and 2 are the masses of both objects in kilograms, and r is the radius in meters. Plugging in the given numbers, you get:

B) You can find the weight of each object on Earth because you know the approximate acceleration due to gravity is 9.81m/s^2. Multiplying this by the mass of each object, you get a weight for the first particle of 76.518 newtons.
C) You can do a similar thing to the previous particle and find that its weight is 11.4*9.81=111.834 newtons.
Hope this helps!
Answer:
The correct answer is 'velocity'of liquid flowing out of an orifice is proportional to the square root of the 'height' of liquid above the center of the orifice.
Explanation:
Torricelli's theorem states that

where
is the velocity with which the fluid leaves orifice
is the head under which the flow occurs.
Thus we can compare the given options to arrive at the correct answer
Velocity is proportional to square root of head under which the flow occurs.