The heat transfer which is in steady state, the heat transfer rate to the wall is equal to the wall.
<u>Explanation:</u>
- The convection transfer of heat to the wall is

- Here,
is the temperature of solid surface,
is the temperature of moving fluid stream which is adjacent of solid surface, h is the heat transfer coefficient. - The coefficient of convection heat transfers outer surface contains 3 times to the inner surface which experience smaller drop of temperature for 3 times that compares to inner surface.
- Hence, the temperatures outer surface get close to the surroundings of air temperature.
The drawbar or other connections must be strong enough to pull all the weight of the vehicle being towed. The drawbar or other connection may not exceed 15 feet from one vehicle to the other.
Answer:
1)f
thats all i know sorry ;-;
Answer:

Explanation:
The turbine is modelled after the First Law of Thermodynamics:

The rate of heat transfer between the turbine and its surroundings is:

The specific enthalpies at inlet and outlet are, respectively:


The required output is:
![\dot Q_{out} = \left(8\,\frac{kg}{s} \right)\cdot \left\{3076.41\,\frac{kJ}{kg}-2675.0\,\frac{kJ}{kg}+\frac{1}{2}\cdot \left[\left(65\,\frac{m}{s} \right)^{2}-\left(42\,\frac{m}{s} \right)^{2}\right] + \left(9.807\,\frac{m}{s^{2}} \right)\cdot (4\,m) \right\} - 8000\,kW](https://tex.z-dn.net/?f=%5Cdot%20Q_%7Bout%7D%20%3D%20%5Cleft%288%5C%2C%5Cfrac%7Bkg%7D%7Bs%7D%20%5Cright%29%5Ccdot%20%5Cleft%5C%7B3076.41%5C%2C%5Cfrac%7BkJ%7D%7Bkg%7D-2675.0%5C%2C%5Cfrac%7BkJ%7D%7Bkg%7D%2B%5Cfrac%7B1%7D%7B2%7D%5Ccdot%20%5Cleft%5B%5Cleft%2865%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%5Cright%29%5E%7B2%7D-%5Cleft%2842%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%5Cright%29%5E%7B2%7D%5Cright%5D%20%2B%20%5Cleft%289.807%5C%2C%5Cfrac%7Bm%7D%7Bs%5E%7B2%7D%7D%20%5Cright%29%5Ccdot%20%284%5C%2Cm%29%20%5Cright%5C%7D%20-%208000%5C%2CkW)

Answer:
Number of rollers required to complete the compaction are 2
Explanation:
The solution is given in the attachments.