A scale factor of 3 was used, because Figure B's measurements are 3 times Figure A's measurements.
Hope that helped!
Improper 7/4 and mixed number 1 3/4
Answer:
V = 63π / 200 m^3
Step-by-step explanation:
Given:
- The function y = f(x) is revolved around the x-axis over the interval [1,6] to form a spherical surface:
y = √(42*x - x^2)
- The surface is coated with paint with uniform layer thickness t = 1.5 mm
Find:
The volume of paint needed
Solution:
- Let f be a non-negative function with a continuous first derivative on the interval [1,6]. The Area of surface generated when y = f(x) is revolved around x-axis over the interval [1,6] is:
![S = 2*\pi \int\limits^a_b { [f(x)*\sqrt{1 + f'(x)^2} }] \, dx](https://tex.z-dn.net/?f=S%20%3D%202%2A%5Cpi%20%5Cint%5Climits%5Ea_b%20%7B%20%5Bf%28x%29%2A%5Csqrt%7B1%20%2B%20f%27%28x%29%5E2%7D%20%7D%5D%20%5C%2C%20dx)
- The derivative of the function f'(x) is as follows:

- The square of derivative of f(x) is:

- Now use the surface area formula:
![S = 2*\pi \int\limits^6_1 { [\sqrt{42x-x^2} *\sqrt{1 + \frac{(21-x)^2}{42x-x^2 } }] \, dx\\\\S = 2*\pi \int\limits^6_1 { [\sqrt{42x-x^2+(21-x)^2} }] \, dx\\\\S = 2*\pi \int\limits^6_1 { [\sqrt{42x-x^2+441-42x+x^2} }] \, dx\\\\S = 2*\pi \int\limits^6_1 { [\sqrt{441} }] \, dx\\S = 2*\pi \int\limits^6_1 { 21} \, dx\\\\S = 42*\pi \int\limits^6_1 { dx} \,\\\\S = 42*\pi [ 6 - 1 ]\\\\S = 42*5*\pi \\\\S = 210\pi](https://tex.z-dn.net/?f=S%20%3D%202%2A%5Cpi%20%5Cint%5Climits%5E6_1%20%7B%20%5B%5Csqrt%7B42x-x%5E2%7D%20%2A%5Csqrt%7B1%20%2B%20%5Cfrac%7B%2821-x%29%5E2%7D%7B42x-x%5E2%20%7D%20%7D%5D%20%5C%2C%20dx%5C%5C%5C%5CS%20%3D%202%2A%5Cpi%20%5Cint%5Climits%5E6_1%20%7B%20%5B%5Csqrt%7B42x-x%5E2%2B%2821-x%29%5E2%7D%20%7D%5D%20%5C%2C%20dx%5C%5C%5C%5CS%20%3D%202%2A%5Cpi%20%5Cint%5Climits%5E6_1%20%7B%20%5B%5Csqrt%7B42x-x%5E2%2B441-42x%2Bx%5E2%7D%20%7D%5D%20%5C%2C%20dx%5C%5C%5C%5CS%20%3D%202%2A%5Cpi%20%5Cint%5Climits%5E6_1%20%7B%20%5B%5Csqrt%7B441%7D%20%7D%5D%20%5C%2C%20dx%5C%5CS%20%3D%202%2A%5Cpi%20%5Cint%5Climits%5E6_1%20%7B%2021%7D%20%5C%2C%20dx%5C%5C%5C%5CS%20%3D%2042%2A%5Cpi%20%5Cint%5Climits%5E6_1%20%7B%20dx%7D%20%5C%2C%5C%5C%5C%5CS%20%3D%2042%2A%5Cpi%20%5B%206%20-%201%20%5D%5C%5C%5C%5CS%20%3D%2042%2A5%2A%5Cpi%20%5C%5C%5C%5CS%20%3D%20210%5Cpi)
- The Volume of the pain coating is:
V = S*t
V = 210*π*3/2000
V = 63π / 200 m^3
Answer: 0.0052
Step-by-step explanation:
Total number of times experiment was performed (n)= 12
Probability of the event (that one key out of a total of 12 opens the door) = 1/12 = 0.083
Hence, p = 0.83
q = 1 - p = 11/12 = 0.917
x = 3
Since the experiment was performed n number of times, a binomial probability distribution can defined the experiment.
P(x=r) = nCr ×p^r × q^n-r
P(x=3) = 12C3 × (0.083)⁴ × (0.917)^8
P(x=3) = 220 × (0.083)⁴ × (0.917)^8
P(x=3) = 0.0052
Answer:
and
Step-by-step explanation:
Observe the number line attached.
In order to find which numbers are a distance of
from
on a number line, you can follow these steps:
First step: You must locate the number
on the number line.
Second step: Move
to the left. Notice that the distance between the numbers
and
is
Third step: Move
to the right. Observe that the distance between the numbers
and
is
You can also verify this through the following addition and subtraction:

Therefore, the numbers that are a distance of
from
on a number line, are:
and