I not sure whatu mean by x is less than -7 on a graph.... but if u are wondering if x is less than -7 on a graph then yeah
Answer:
∠A = 30°
∠B = 60°
∠C= 90°
Step-by-step explanation:
This is a right triangle, you can see it mainly by the red square in C, and it is always used to mark 90 degrees.
Knowing that, you now know <em>∠C is 90°</em>
Now, to find ∠B, you should use the following equation:
This means that the sum of the three angles of a triangle gives 180. ALWAYS. So to find the missing angle, ∠B, do the following:
Fill the values of the equation with the angles you now know:
Solve the equation, passing the 30° and 90° to the other side of the equal sing with Inverse Operation:
<em>B = 60</em>
<em>Hope it helps!!</em>
Answer:
x = 3, y = 7
or (3,7)
Step-by-step explanation:
We are given the system of equations below:

We are required to solve the system by substitution method. What we have to do is to isolate either x-term or y-term so we can use the method. I will be isolating y-term because it is faster due to having 1 as a coefficient.
By isolating y-term, just pick one of the given equations to isolate. No need to isolate the whole system. (I will be isolating y-term of the first equation.)

Then we substitute y = 2x+1 in the second equation.

Use the distribution property.

Isolate x-term to solve the equation.

Since we are solving a system of equations. We have to solve for both x-value and y-value to complete. We have already found x-value, but nor y-value yet. Therefore, our next step is to substitute the value of x that we solved in any given equations. It's recommended to substitute in an equation that doesn't have high coefficient value. So I will be substituting x = 3 in the first equation.

Isolate and solve for y-term.

Since we substitute x = 3 and get y = 7. We can write in ordered pairs as (3,7)
Hence, the solution is (3,7)
Answer:
a)
<u>Verify is the corresponding sides have same ratio:</u>
- AB / DE = 50/60 = 5/6
- BC / EF = 20/24 = 5/6
Since the ratios are same, the triangles are similar
b)
<u>If one dimension is same, the base areas will make difference by the square of the scale factor:</u>