1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sati [7]
3 years ago
14

Triangle ABC has vertices of A(–6, 7), B(4, –1), and C(–2, –9). Find the length of the median from A) 4 b) square Root of 18


C) 8
D) Square root of 68

Mathematics
1 answer:
igomit [66]3 years ago
8 0
We know that
the median<span> is the segment that joins each vertex with the midpoint of the opposite side</span>

using a graph tool
see the attached figure

Step 1
Find the midpoint segment BC
<span>B(4, –1), and C(–2, –9)
</span>
Xm=(4-2)/2=1
Ym=(-1-9)/2=-5
the midpoint BC is (1,-5)

the length of median is the distance point A(-6,7) and midpoint BC (1,-5)
d=√(12²+7²)=√193=13.89 units

the answer is 13.89 units


You might be interested in
Find the remaining trigonometric ratios of θ if csc(θ) = -6 and cos(θ) is positive
VikaD [51]
Now, the cosecant of θ is -6, or namely -6/1.

however, the cosecant is really the hypotenuse/opposite, but the hypotenuse is never negative, since is just a distance unit from the center of the circle, so in the fraction -6/1, the negative must be the 1, or 6/-1 then.

we know the cosine is positive, and we know the opposite side is -1, or negative, the only happens in the IV quadrant, so θ is in the IV quadrant, now

\bf csc(\theta)=-6\implies csc(\theta)=\cfrac{\stackrel{hypotenuse}{6}}{\stackrel{opposite}{-1}}\impliedby \textit{let's find the \underline{adjacent side}}&#10;\\\\\\&#10;\textit{using the pythagorean theorem}\\\\&#10;c^2=a^2+b^2\implies \pm\sqrt{c^2-b^2}=a&#10;\qquad &#10;\begin{cases}&#10;c=hypotenuse\\&#10;a=adjacent\\&#10;b=opposite\\&#10;\end{cases}&#10;\\\\\\&#10;\pm\sqrt{6^2-(-1)^2}=a\implies \pm\sqrt{35}=a\implies \stackrel{IV~quadrant}{+\sqrt{35}=a}

recall that 

\bf sin(\theta)=\cfrac{opposite}{hypotenuse}&#10;\qquad\qquad &#10;cos(\theta)=\cfrac{adjacent}{hypotenuse}&#10;\\\\\\&#10;% tangent&#10;tan(\theta)=\cfrac{opposite}{adjacent}&#10;\qquad \qquad &#10;% cotangent&#10;cot(\theta)=\cfrac{adjacent}{opposite}&#10;\\\\\\&#10;% cosecant&#10;csc(\theta)=\cfrac{hypotenuse}{opposite}&#10;\qquad \qquad &#10;% secant&#10;sec(\theta)=\cfrac{hypotenuse}{adjacent}

therefore, let's just plug that on the remaining ones,

\bf sin(\theta)=\cfrac{-1}{6}&#10;\qquad\qquad &#10;cos(\theta)=\cfrac{\sqrt{35}}{6}&#10;\\\\\\&#10;% tangent&#10;tan(\theta)=\cfrac{-1}{\sqrt{35}}&#10;\qquad \qquad &#10;% cotangent&#10;cot(\theta)=\cfrac{\sqrt{35}}{1}&#10;\\\\\\&#10;sec(\theta)=\cfrac{6}{\sqrt{35}}

now, let's rationalize the denominator on tangent and secant,

\bf tan(\theta)=\cfrac{-1}{\sqrt{35}}\implies \cfrac{-1}{\sqrt{35}}\cdot \cfrac{\sqrt{35}}{\sqrt{35}}\implies \cfrac{-\sqrt{35}}{(\sqrt{35})^2}\implies -\cfrac{\sqrt{35}}{35}&#10;\\\\\\&#10;sec(\theta)=\cfrac{6}{\sqrt{35}}\implies \cfrac{6}{\sqrt{35}}\cdot \cfrac{\sqrt{35}}{\sqrt{35}}\implies \cfrac{6\sqrt{35}}{(\sqrt{35})^2}\implies \cfrac{6\sqrt{35}}{35}
3 0
3 years ago
If a kid was playing for 4 hours and he did 9 activitys how much time did each activity take
nadezda [96]

Answer:

26.6667 minutes or 0.444 hours per activity.

Step-by-step explanation:

If he spent an equal amount of time on each activity, then it would have to be divided equally: 4hours/9

In minutes:

4 x 60 = 240 minutes

240/9

26.6667 minutes per activity.

In Hours:

4/9

0.444 hours per activity.

3 0
3 years ago
Read 2 more answers
If M is the midpoint of XY, find the coordinates of X if M(-3,-1) and Y(-8,6)
vova2212 [387]
\bf \textit{middle point of 2 points }\\ \quad \\&#10;\begin{array}{lllll}&#10;&x_1&y_1&x_2&y_2\\&#10;%  (a,b)&#10;X&({{ a}}\quad ,&{{ b}})\quad &#10;%  (c,d)&#10;Y&({{ -8}}\quad ,&{{ 6}})&#10;\end{array}\qquad&#10;%   coordinates of midpoint &#10;\left(\cfrac{{{ x_2}} + {{ x_1}}}{2}\quad ,\quad \cfrac{{{ y_2}} + {{ y_1}}}{2} \right)

\bf \left( \cfrac{-8+a}{2}~,~\cfrac{6+b}{2} \right)=\stackrel{M}{(-3,-1)}\implies &#10;\begin{cases}&#10;\cfrac{-8+a}{2}=-3\\\\&#10;-8+a=-6\\&#10;\boxed{a=2}\\&#10;----------\\&#10;\cfrac{6+b}{2}=-1\\\\&#10;6+b=-2\\&#10;\boxed{b=-8}&#10;\end{cases}
5 0
3 years ago
7. It is impossible for the Census Bureau to obtain all the census data about the
quester [9]

correct, as there are illegal immigrants.

7 0
3 years ago
2
Svetlanka [38]

Answer:

area of rectangle=l×b=2.4×5.8=13.92cm²

6 0
3 years ago
Read 2 more answers
Other questions:
  • In Art Class, you designed a rectangle stained glass window. The
    5·1 answer
  • What is the answer for y^2+17y+170
    9·1 answer
  • I need help with number 3, i’m stuck!
    8·1 answer
  • Find the angle between the given vectors to the nearest tenth of a
    5·1 answer
  • What is an equivalent expression to 5( x plus 3y)
    6·1 answer
  • PLEASE HELP 30 POINTS
    14·1 answer
  • 50 POINTS! + Brainliest Hannah is at the supermarket to buy carrots and potatoes. If she buys 2 pounds of carrots and 3 pounds o
    7·1 answer
  • Evaluate<br> Write your answer as a fraction in simplest form.<br> HELP PLEASE
    13·2 answers
  • Which statement is true?
    6·1 answer
  • Jasmine is trying to replace the flooring in her rectangular bedroom. When she measured the width and length of the floor, she f
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!